检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
为保证模型的泛化能力,数据集尽量覆盖可能出现的各种场景。 每一类数据尽量多,尽量均衡。每个分类标签需要准备20个数据以上,为了训练出效果较好的模型,建议每个分类标签准备200个以上的数据。 针对未标注数据,要求将图片放在一个目录里,示例如下所示。 ├─dataset-import-example
数据集要求 文件名规范,不能有中文,不能有+、空格、制表符。 保证图片质量:不能有损坏的图片;目前支持的格式包括JPG、JPEG、PNG、BMP。 不要把明显不同的多个任务数据放在同一个数据集内。 为了保证模型的预测准确度,训练样本跟真实使用场景尽量相似。 为保证模型的泛化能力,数据集尽量覆盖可能出现的各种场景。
数据,单个样本不能有分行显示,不支持换行。 基于已设计好的分类标签准备文本数据。每个分类标签需要准备5个及以上数据,为了训练出效果较好的模型,建议每个分类标签准备100个以上的数据。 针对未标注数据,将待标注的内容放在一个文本文件内,通用文本分类工作流仅支持中文文本内容的分类,其
数据,单个样本不能有分行显示,不支持换行。 文本数据至少包含2个及以上的标签。每个分类标签需要准备5个及以上数据,为了训练出效果较好的模型,建议每个分类标签准备100个以上的数据。 多语种文本分类工作流仅支持对单语种的文本分类,当前支持文本分类的语种包括英语、法语、德语、西班牙语
自动标注数据 针对已经选择的数据和SKU,在应用开发的“数据标注”页面,ModelArts Pro会自动标注数据,自动标注完成后,可对每个数据的标注结果进行核对和确认。 前提条件 已在视觉套件控制台选择“零售商品识别工作流”新建应用,并已执行到“SKU创建”步骤,详情请见创建SKU。
数据,单个样本不能有分行显示,不支持换行。 基于已设计好的实体标签准备文本数据。每个实体标签需要准备20个及以上数据,为了训练出效果较好的模型,建议每个实体标签准备100个以上的数据。 本工作流只支持上传未标注数据,将待标注的内容放在一个文本文件内。 上传数据至OBS 使用ModelArts
管理数据集版本 数据标注完成后,您可以发布成多个版本对数据集进行管理。针对已发布生产的数据集版本,您可以通过查看数据集演进过程、设置当前版本、删除版本等操作,对数据集进行管理。数据集版本的相关说明,请参见关于数据集版本。 发布为新版本的说明,请参见发布数据集。 进入数据集版本管理页面
如何上传数据至OBS? 使用ModelArts Pro进行应用开发时,您需要将数据上传至对象存储服务(OBS)桶中。您可以登录OBS管理控制台创建OBS桶,并在您创建的OBS桶中创建文件夹,然后再进行数据的上传,OBS上传数据的详细操作请参见《对象存储服务快速入门》。 您在创建O
上传数据集失败如何处理? 问题原因 上传数据集失败,一般是因为数据集格式不对导致的。不同行业套件的工作流,对数据集要求也不同。 首先请检查数据集是否符合要求,各个套件的数据集要求如下: 文字识别套件 自然语言处理套件 视觉套件 HiLens套件 确认数据集符合要求后,将数据集上传至OBS桶。
训练模型 选择训练数据后,基于已标注的训练数据,选择预训练模型、配置参数,用于训练安全帽检测模型。 前提条件 已创建用于存储数据的OBS桶及文件夹,且数据存储的OBS桶与ModelArts Pro在同一区域,详情请见创建OBS桶。 已在ModelArts Pro控制台选择“HiL
配额说明 本服务在使用数据集、在线服务、训练任务资源时涉及配额限制。 其配额查看及修改请参见关于配额。
检查不同标签的样本数是否均衡,建议不同标签的样本数量级相同,并尽量接近,如果有的类别数据量很高,有的类别数据量较低,会影响模型整体的识别效果。 选择适当的学习率和训练轮次。 通过详细评估中的错误识别示例,有针对性地扩充训练数据。 后续操作 模型训练完成后,单击“下一步”,进入应用开发的“模型评估”步骤,详细操作指引请参见评估模型。
检查不同标签的样本数是否均衡,建议不同标签的样本数量级相同,并尽量接近,如果有的类别数据量很高,有的类别数据量较低,会影响模型整体的识别效果。 选择适当的学习率和训练轮次。 通过详细评估中的错误识别示例,有针对性地扩充训练数据。 后续操作 模型训练完成后,单击“下一步”,进入应用开发的“模型评估”步骤,详细操作指引请参见评估模型。
这个量级建议扩充。 检查不同标签的样本数是否均衡,建议不同标签的样本数量级相同,并尽量接近,如果有的类别数据量很高,有的类别数据量较低,会影响模型整体的识别效果。 选择适当的学习率和训练轮次。 通过详细评估中的错误识别示例,有针对性地扩充训练数据。 后续操作 模型训练完成后,单击
训练模型 针对已标注完成的训练数据,开始训练模型,您可以查看训练的模型交并比和误差变化。 前提条件 已在视觉套件控制台选择“第二相面积含量测定工作流”新建应用,并已执行完“数据标注”步骤,详情请见标注数据。 训练模型 在“模型训练”页面配置训练参数,开始训练模型。 在“参数配置”
检查不同标签的样本数是否均衡,建议不同标签的样本数量级相同,并尽量接近,如果有的类别数据量很高,有的类别数据量较低,会影响模型整体的识别效果。 选择适当的学习率和训练轮次。 通过详细评估中的错误识别示例,有针对性地扩充训练数据。 后续操作 模型训练完成后,单击“下一步”,进入应用开发的“模型评估”步骤,详细操作指引请参见评估模型。
检查不同标签的样本数是否均衡,建议不同标签的样本数量级相同,并尽量接近,如果有的类别数据量很高,有的类别数据量较低,会影响模型整体的识别效果。 选择适当的学习率和训练轮次。 通过详细评估中的错误识别示例,有针对性地扩充训练数据。 后续操作 模型训练完成后,单击“下一步”,进入应用开发的“模型评估”步骤,详细操作指引请参见评估模型。
检查不同标签的样本数是否均衡,建议不同标签的样本数量级相同,并尽量接近,如果有的类别数据量很高,有的类别数据量较低,会影响模型整体的识别效果。 选择适当的学习率和训练轮次。 通过详细评估中的错误识别示例,有针对性地扩充训练数据。 后续操作 模型训练完成后,单击“下一步”,进入应用开发的“模型评估”步骤,详细操作指引请参见评估模型。
检查不同标签的样本数是否均衡,建议不同标签的样本数量级相同,并尽量接近,如果有的类别数据量很高,有的类别数据量较低,会影响模型整体的识别效果。 选择适当的学习率和训练轮次。 通过详细评估中的错误识别示例,有针对性地扩充训练数据。 后续操作 模型训练完成后,单击“下一步”,进入应用开发的“模型评估”步骤,详细操作指引请参见评估模型。