检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
ta.sh 。 预训练数据集预处理参数说明 预训练数据集预处理脚本scripts/llama2/1_preprocess_data.sh 中的具体参数如下: --input:原始数据集的存放路径。 --output-prefix:处理后的数据集保存路径+数据集名称(例如:moss-003-sft-data)。
ta.sh 。 预训练数据集预处理参数说明 预训练数据集预处理脚本scripts/llama2/1_preprocess_data.sh 中的具体参数如下: --input:原始数据集的存放路径。 --output-prefix:处理后的数据集保存路径+数据集名称(例如:moss-003-sft-data)。
ta.sh 。 预训练数据集预处理参数说明 预训练数据集预处理脚本scripts/llama2/1_preprocess_data.sh 中的具体参数如下: --input:原始数据集的存放路径。 --output-prefix:处理后的数据集保存路径+数据集名称(例如:moss-003-sft-data)。
ModelArts为用户提供了标注数据的能力: 人工标注:用户创建单人标注作业,对数据进行手工标注。 智能标注:在标注一定量的数据情况下,用户可以通过启动智能标注任务对数据进行自动标注,提高标注的效率。 团队标注:对于大批量的数据,用户可以通过创建团队标注作业,进行多人协同标注。 人工标注 对
ta.sh 。 预训练数据集预处理参数说明 预训练数据集预处理脚本scripts/llama2/1_preprocess_data.sh 中的具体参数如下: --input:原始数据集的存放路径。 --output-prefix:处理后的数据集保存路径+数据集名称(例如:moss-003-sft-data)。
s在同一个区域。如何查看OBS桶与ModelArts的所处区域,请参见查看OBS桶与ModelArts是否在同一区域。 建议根据业务情况及使用习惯,选择OBS使用方法。 如果您的数据量较小(小于100MB)或数据文件少(少于100个),建议您使用控制台上传数据。控制台上传无需工具
查看数据处理任务详情 登录ModelArts管理控制台,在左侧的导航栏中选择“数据准备>数据处理”,进入“数据处理”页面。 在数据处理列表中,单击数据处理任务名称,进入数据处理任务的版本管理页面。您可以在该页面进行数据处理任务的“修改”与“删除”。 图1 数据处理版本管理页面 您
标注声音分类数据 项目创建完成后,将会自动跳转至新版自动学习页面,并开始运行,当数据标注节点的状态变为“等待操作”时,需要手动进行确认数据集中的数据标注情况,也可以对数据集中的数据进行标签的修改,数据的增加或删减。 图1 数据标注节点状态 音频标注 在新版自动学习页面单击“实例详
ts数据集。 提供多种数据接入方式,支持用户从OBS,MRS,DLI以及DWS等服务导入用户的数据。 提供18+数据增强算子,帮助用户扩增数据,增加训练用的数据量。 帮助用户提高数据的质量。 提供图像、文本、音频、视频等多种格式数据的预览,帮助用户识别数据质量。 提供对数据进行多
训练的数据集预处理说明 以llama2-13b举例,使用训练作业运行:obs_pipeline.sh 训练脚本后,脚本自动执行数据集预处理,并检查是否已经完成数据集预处理。 如果已完成数据集预处理,则直接执行训练任务。如果未进行数据集预处理,则会自动执行scripts/llama2/1_preprocess_data
训练的数据集预处理说明 以llama2-13b举例,使用训练作业运行:obs_pipeline.sh 训练脚本后,脚本自动执行数据集预处理,并检查是否已经完成数据集预处理。 如果已完成数据集预处理,则直接执行训练任务。如果未进行数据集预处理,则会自动执行scripts/llama2/1_preprocess_data
a.sh 。 预训练数据集预处理参数说明 预训练数据集预处理脚本 scripts/llama2/1_preprocess_data.sh 中的具体参数如下: --input:原始数据集的存放路径。 --output-prefix:处理后的数据集保存路径+数据集名称(例如:alpaca_gpt4_data)。
a.sh 。 预训练数据集预处理参数说明 预训练数据集预处理脚本 scripts/llama2/1_preprocess_data.sh 中的具体参数如下: --input:原始数据集的存放路径。 --output-prefix:处理后的数据集保存路径+数据集名称(例如:alpaca_gpt4_data)。
创建数据集版本 为数据集创建新的版本。 dataset.create_version(name=None, version_format=None, label_task_type=None, label_task_id=None, **kwargs) 示例代码 示例一:为数据集创建新的版本
Profiling数据采集 在train.py的main()函数Step迭代处添加配置,添加位置如下图所示: 此处需要注意的是prof.step()需要加到dataloder迭代循环的内部以保证采集单个Step迭代的Profiling数据。 更多信息,请参见Ascend PyTorch
get_model_list打印参数说明 参数 参数类型 描述 total_count Integer 不分页的情况下,符合查询条件的总模型数量。 count Integer 模型数量。 models model结构数组 模型元数据信息。 表3 model结构 参数 参数类型 描述 model_id String 模型ID。
ta.sh 。 预训练数据集预处理参数说明 预训练数据集预处理脚本scripts/llama2/1_preprocess_data.sh 中的具体参数如下: --input:原始数据集的存放路径。 --output-prefix:处理后的数据集保存路径+数据集名称(例如:moss-003-sft-data)。
ta.sh 。 预训练数据集预处理参数说明 预训练数据集预处理脚本scripts/llama2/1_preprocess_data.sh 中的具体参数如下: --input:原始数据集的存放路径。 --output-prefix:处理后的数据集保存路径+数据集名称(例如:moss-003-sft-data)。
ta.sh 。 预训练数据集预处理参数说明 预训练数据集预处理脚本scripts/llama2/1_preprocess_data.sh 中的具体参数如下: --input:原始数据集的存放路径。 --output-prefix:处理后的数据集保存路径+数据集名称(例如:moss-003-sft-data)。
删除数据集 根据数据集ID删除指定的数据集 delete_dataset(session, dataset_id) 示例代码 删除数据集 from modelarts.session import Session from modelarts.dataset import Dataset