检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
为了帮助用户更好地管理和优化Token消耗,平台提供了Token计算器工具。Token计算器可以帮助用户在模型推理前评估文本的Token数量,提供费用预估,并优化数据预处理策略。 URI POST /v1/{project_id}/deployments/{deployment_id}/caltokens
Asia/Shanghai ; # # sdk.memory.rds.url= # sdk.memory.rds.user= # sdk.memory.rds.password= # sdk.memory.rds.poolSize= ################################
否需要为您预订其他时间段或者其他会议室? - 步骤1: 思考:好的,我需要先查询A02会议室今天下午3点到8点的预订状态。使用meeting_room_status_query工具进行查询。 行动:使用工具[meeting_room_status_query],传入参数"{\"start\":
该工具链能够高效收集和处理各种格式的数据,满足不同训练和评测任务的需求。通过提供自动化的质量检测和数据清洗能力,对原始数据进行优化,确保其质量和一致性。同时,数据工程工具链还提供强大的数据存储和管理能力,为大模型训练提供高质量的数据支撑。 支持区域: 西南-贵阳一 使用数据工程准备与处理数据集 检测数据集质量
与其他云服务的关系 与对象存储服务的关系 盘古大模型使用对象存储服务(Object Storage Service,简称OBS)存储数据和模型,实现安全、高可靠和低成本的存储需求。 与ModelArts服务的关系 盘古大模型使用ModelArts服务进行算法训练部署,帮助用户快速创建和部署模型。
型的对话问答、规划推理、逻辑判断等能力,来理解和回应用户的需求。 例如,需要构建一个企业助理应用,该应用需要具备预定会议室、创建在线文档和查询报销信息等功能。在构建此应用时,需要将预定会议室与创建在线文档等功能的API接口定义为一系列的工具,并通过AI助手,将这些工具与大模型进行
选中需要评估的候选提示词,单击左上角“创建评估”按钮,跳转评估任务创建页面。 图2 创建评估 选择评估使用的变量数据集和评估方法。 数据集:根据选择的数据集,将待评估的提示词和数据集中的变量自动组装成完整的提示词,输入模型生成结果。 评估方法:根据选择的评估方法,对模型生成结果和预期结果进行比较,并根据算法给出相应的得分。
"meeting_room_status_query", toolDesc = "查询会议室的状态,是否被预订或者正在使用中", toolPrinciple = "请在需要预订会议室之前使用,查询会议室状态判断是否可以预订", inputDesc = "", outPutDesc
目标任务依赖垂域背景知识:通用模型学习到的知识大部分都是来自互联网上的开源数据,如果目标任务本身属于某个领域(如金融、政务、法律、医疗、工业等),需要依赖很深的领域背景知识,那么通用模型可能无法满足这些要求,需要在该领域的数据集上进行微调,以增强模型的泛化能力。 回答的风格或格式有特殊要求
微调数据清洗: 以下是该场景中实际使用的数据清洗策略,供您参考: 原始文本处理。基于爬虫、数据处理平台批量处理收集到的原始数据,需要将文件统一转换成纯文本的txt文件,对错误格式数据进行删除。 构建微调数据。生成垂域微调(问答对)数据,将问答对数据分为:单轮问答数据、多轮问答
盘古大模型套件在订购时分为模型资产和模型推理资产。 模型资产即盘古系列大模型,用户可以订购盘古基模型、功能模型、专业大模型。 基模型:基模型经过大规模数据的预训练,能够学习并理解多种复杂特征和模式。这些模型可作为各种任务的基础,包括但不限于阅读理解、文本生成和情感分析等,但不具备对话问答能力。
它从未标记的数据中提取监督信号,属于无监督学习的一个子集。该方法通过创建“预设任务”让模型从数据中学习,从而生成有用的表示,可用于后续任务。它无需额外的人工标签数据,因为监督信号直接从数据本身派生。 有监督学习 有监督学习是机器学习任务的一种。它从有标记的训练数据中推导出预测函
己的模型。 数据工程套件 数据是大模型训练的基础,为大模型提供了必要的知识和信息。数据工程套件作为盘古大模型服务的重要组成部分,具备数据获取、清洗、配比和管理等功能。该套件能够高效收集和处理各种格式的数据,满足不同训练和评测任务的需求。通过提供自动化的质量检测和数据清洗能力,对原
是众多自然语言处理下游任务的基础模型。学术界和工业界的实践证明,随着模型参数规模的增加,自然语言处理下游任务的效果显著提升,这得益于海量数据、大量算力以及深度学习的飞跃发展。 基于自然语言处理大模型的预训练模型,可以根据业务需求开发出诸如营销文案生成、阅读理解、智能对话和代码生成等应用功能。
盘古-NLP-BI专业大模型-4K 4096 基于NLP-N2-基础功能模型运用特定专业代码数据训练后的BI专业大模型,具有4K上下文能力。 盘古-NLP-BI专业大模型-32K 32768 基于NLP-N2-基础功能模型运用特定专业代码数据训练后的BI专业大模型,具有32K上下文能力。 盘古-NLP-N2单场景模型-4K
训练智能客服系统大模型需要考虑哪些方面 根据智能客服场景,建议从以下方面考虑: 根据企业实际服务的场景和积累的数据量,评估是否需要构建行业模型,如电商、金融等。 根据每个客户的金牌客服话术,可以对对话模型进行有监督微调,进一步优化其性能。 根据每个客户的实际对话知识,如帮助文档、
调用AI助手API 获取AI助手API调用地址 登录盘古大模型套件平台。 左侧导航栏选择“应用开发 > AI助手”,选择需要运行的AI助手,单击“查看”。 图1 查看AI助手 在详情页面,AI助手API调用地址。 图2 获取调用地址 获取Token 本示例中,通过使用Postman软件获取Token。
明、表5。 在数据配置中,选择训练数据集、验证数据等参数。 验证数据可选择“从训练数据拆分”和“从已有数据导入”。 从训练数据拆分:取值范围[1%-50%]。设置1%即从训练数据中随机拆分出1%的数据作为验证集,验证集中最多使用100条数据用于模型训练效果评估。数据按比例拆分后,
toolPrinciple = "请在有用户ID、用户单据、用户最大报销比例的情况下查询用户最大报销额度时调用此工具。需要先分别调用query_receipt工具查询用户单据和query_reimbursement_ratio工具查询最大报销比例。", inputDesc = "用户ID、用户单据、用户报销最大比例"
评估盘古大模型 创建模型评估数据集 创建模型评估任务 查看评估任务详情