检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
授权管理 查看授权列表 配置授权 删除授权 创建ModelArts委托
对生成比对表格。当前比对结果支持计算Cosine(余弦相似度)、MaxAbsErr(最大绝对误差)和MaxRelativeErr(最大相对误差)、One Thousandth Err Ratio(双千分之一)和Five Thousandths Err Ratio(双千分之五)这几
际的项目需要迁移,建议填写下方的推理业务迁移评估表,并将该调研表提供给华为云技术支持人员进行迁移评估,以确保迁移项目能顺利实施。 通用的推理业务及LLM推理可提供下表进行业务迁移评估: 表1 通用的推理业务及LLM推理业务迁移评估表 收集项 说明 实际情况(请填写) 项目名称 项目名称,例如:XXX项目。
Insight,要求先启动MindInsight,后启动训练进程。 仅支持单机单卡训练。 运行中的可视化作业不单独计费,当停止Notebook实例时,计费停止。 Summary文件如果存放在OBS中,由OBS单独收费。任务完成后请及时停止Notebook实例,清理OBS数据,避免产生不必要的费用。
步骤请参考创建资源池。 资源规格要求: 计算规格:用户可参考表2。 硬盘空间:至少200GB。 昇腾资源规格: Ascend: 1*ascend-snt9b表示昇腾单卡。 Ascend: 8*ascend-snt9b表示昇腾8卡。 推荐使用“西南-贵阳一”Region上的昇腾资源。
模型NPU卡数、梯度累积值取值表 不同模型推荐的训练参数和计算规格要求如表1所示。规格与节点数中的1*节点 & 4*Ascend表示单机4卡,以此类推。 表1 NPU卡数、加速框架、梯度配置取值表 模型 Template 模型参数量 训练策略类型 序列长度cutoff_len 梯度累积值
rc3 软件配套版本 本方案支持的软件配套版本和依赖包获取地址如表2所示。 表2 软件配套版本和获取地址 软件名称 说明 下载地址 AscendCloud-6.3.910-xxx.zip 说明: 软件包名称中的xxx表示时间戳。 包含了本教程中使用到的推理部署代码和推理评测代码、推理
模型NPU卡数、梯度累积值取值表 不同模型推荐的训练参数和计算规格要求如表1所示。规格与节点数中的1*节点 & 4*Ascend表示单机4卡,以此类推。 表1 NPU卡数、加速框架、梯度配置取值表 模型 Template 模型参数量 训练策略类型 序列长度cutoff_len 梯度累积值
ca数据集; MBS 4 表示流水线并行中一个micro batch所处理的样本量。在流水线并行中,为了减少气泡时间,会将一个step的数据切分成多个micro batch。 该值与TP和PP以及模型大小相关,可根据实际情况进行调整。 GBS 512 表示训练中所有机器一个ste
基于advisor的昇腾训练性能自助调优指导 advisor调优总体步骤 创建诊断任务 查看诊断报告 父主题: GPU业务迁移至昇腾训练推理
森林来代替决策树。 增加更多的特征,使输入数据具有更强的表达能力。 特征挖掘十分重要,尤其是具有强表达能力的特征,可以抵过大量的弱表达能力的特征。 特征的数量并非重点,质量才是,总之强表达能力的特征最重要。 能否挖掘出强表达能力的特征,还在于对数据本身以及具体应用场景的深刻理解,这依赖于经验。
的告警规则并配置主题订阅方式发送通知。具体操作请参考设置告警规则。 当配置完成后,在左侧导航栏选择“云服务监控 > ModelArts”即可查看在线服务的请求情况和资源占用情况,如下图所示。 图4 查看服务的监控指标 当监控信息触发告警时,主题订阅对象将会收到消息通知。 图5 告警消息通知
sft_70b.sh 和 0_pl_sft_13b.sh 。 修改模型训练脚本中的超参配置,必须修改的参数如表1所示。其他超参均有默认值,可以参考表1按照实际需求修改。 表1 训练超参配置说明 参数 示例值 参数说明 ORIGINAL_TRAIN_DATA_PATH /home/
属资源池(NEW)的详情页面查看到。ModelArts上支持的Cann软件版本可以在训练基础镜像详情页面查看,具体请参见训练基础镜像详情(Ascend-Powered-Engine)。 Ascend驱动版本与Cann软件版本的兼容关系如下表所示: 表1 Ascend驱动版本与Cann软件版本的兼容关系
hatglm3-6b/tokenization_chatglm.py 。 文件最后几处代码中需要修改,具体位置可根据上下文代码信息进行查找,修改后如图所示。 图2 修改ChatGLMv3-6B tokenizer文件 图3 修改ChatGLMv3-6B tokenizer文件 GLMv4-9B
hatglm3-6b/tokenization_chatglm.py 。 文件最后几处代码中需要修改,具体位置可根据上下文代码信息进行查找,修改后如图2所示。 图2 修改ChatGLMv3-6B tokenizer文件 图3 修改ChatGLMv3-6B tokenizer文件 GLMv4-9B
chatglm3-6b/tokenization_chatglm.py 。 文件最后几处代码中需要修改,具体位置可根据上下代码信息进行查找,修改后如图2所示。 图2 修改ChatGLMv3-6B tokenizer文件 图3 修改ChatGLMv3-6B tokenizer文件 GLMv4-9B
rc3 软件配套版本 本方案支持的软件配套版本和依赖包获取地址如表2所示。 表2 软件配套版本和获取地址 软件名称 说明 下载地址 AscendCloud-6.3.911-xxx.zip 说明: 软件包名称中的xxx表示时间戳。 包含了本教程中使用到的推理部署代码和推理评测代码、推理
方式四:使用Java语言发送预测请求。 约束限制 调用API访问在线服务时,对预测请求体大小和预测时间有限制: 请求体的大小不超过12MB,超过后请求会被拦截。 因APIG(API网关)限制,平台每次请求预测的时间不超过40秒。 前提条件 已经获取用户Token、预测文件的本地路径、在线服务的调用地址和在线服务的输入参数信息。
布式和GPU分布式,将代码中的分布式改造点注释掉后即可进行单节点单卡训练。 训练代码中包含三部分入参,分别为训练基础参数、分布式参数和数据相关参数。其中分布式参数由平台自动入参,无需自行定义。数据相关参数中的custom_data表示是否使用自定义数据进行训练,该参数为“true