检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
上传OBS的文件规范: 文件名规范,不能有中文,不能有+、空格、制表符。 如不需要提前上传训练数据,请创建一个空文件夹用于存放工程后期生成的文件。如:“/bucketName/data-cat”。 如需要提前上传待标注的图片,请创建一个空文件夹,然后将图片文件保存在该文件夹下
填写基本信息。基本信息包括“名称”、“版本”和“描述”。其中“版本”信息由系统自动生成,按“V0001”、“V0002”规则命名,用户无法修改。 您可以根据实际情况填写“名称”和“描述”信息。 图1 创建数据处理基本信息 设置场景类别。场景类别当前支持“图像分类”和“物体检测”。 设置数据处理类
--num_nodes <nodes>:训练节点总个数 --rank <rank>:节点ID 训练完成后,test-benchmark目录下会生成训练日志及NPU利用率日志,如qwen2.5-7b日志。 qwen2.5-7b-sft-4096-lora-313T-20241028_164746-0
ains-input.jpg python onnx_pipeline.py 生成的图片fantasy_landscape.png会保存在当前路径下,该图片也可以作为后期精度校验的一个对比。 图2 生成图片 父主题: 基于AIGC模型的GPU推理业务迁移至昇腾指导
--num_nodes <nodes>:训练节点总个数 --rank <rank>:节点ID 训练完成后,test-benchmark目录下会生成训练日志及NPU利用率日志,如qwen2.5-7b日志。 qwen2.5-7b-sft-4096-lora-313T-20241028_164746-0
sh制作请参见下文创建推理脚本文件run_vllm.sh的介绍。 SSL证书制作包含cert.pem和key.pem,需自行生成。生成方式请参见•通过openssl创建SSLpem证书。 图1 准备模型文件和权重文件 创建推理脚本文件run_vllm.sh run_vllm.sh脚本示例如下。
<output_dir>: <可选>任务完成输出excel表格路径,默认为"./"当前所在路径。 查看性能结果 任务完成之后会在test-benchmark目录下生成excel表格: 性能结果LLaMAFactory_train_performance_benchmark_<版本号>_<时间戳>.xlsx
130GB/s的情况。加这个参数以后,2节点和2节点以上情况的速度才会稳定一些。 测试时需要执行mpirun的节点到hostfile中的节点间有免密登录,设置SSH免密登录方法如下: 客户端生成公私钥。 执行如下命令,在本地客户端生成公私钥(一路回车默认即可)。 ssh-keygen
在本地PyCharm中已有训练代码工程。 已在OBS中创建桶和文件夹,用于存放数据集和训练输出模型。 例如:创建命名为“test-modelarts2”的桶,创建文件夹“dataset-mnist”和“mnist-output”。训练作业使用的数据已上传至OBS,且OBS与ModelArts在同一区域。
启动智能任务 功能介绍 启动智能任务,支持启动“智能标注”和“自动分组”两大类智能任务。可通过指定请求体中的“task_type”参数来启动某类任务。数据路径或工作路径位于KMS加密桶的数据集,不支持启动主动学习和自动分组任务,支持预标注任务。 “智能标注”是指基于当前标注阶段的
即便模型训练中断,也可以基于checkpoint接续训练。 当训练作业发生故障中断本次作业时,代码可自动从训练中断的位置接续训练,加载中断生成的checkpoint,中间不需要改动任何参数(支持预训练、LoRA微调、SFT微调)。 如果要使用自动重启功能,资源规格必须选择八卡规格。
peed; sh ./scripts/obs_pipeline.sh Step2 配置数据输入和输出 单击“增加训练输入”和“增加训练输出”,用于配置训练作业开始时需要输入数据的路径和训练结束后输出数据的路径。 在“输入”的输入框内设置变量:ORIGINAL_TRAIN_DATA
peed; sh ./scripts/obs_pipeline.sh Step2 配置数据输入和输出 单击“增加训练输入”和“增加训练输出”,用于配置训练作业开始时需要输入数据的路径和训练结束后输出数据的路径。 在“输入”的输入框内设置变量:ORIGINAL_TRAIN_DATA
peed; sh ./scripts/obs_pipeline.sh Step2 配置数据输入和输出 单击“增加训练输入”和“增加训练输出”,用于配置训练作业开始时需要输入数据的路径和训练结束后输出数据的路径。 在“输入”的输入框内设置变量:ORIGINAL_TRAIN_DATA
填写基本信息。基本信息包括“名称”、“版本”和“描述”。其中“版本”信息由系统自动生成,按“V0001”、“V0002”规则命名,用户无法修改。 您可以根据实际情况填写“名称”和“描述”信息。 设置场景类别。场景类别当前支持“图像分类”和“物体检测”。 设置数据处理类型“数据选择”
在线服务授权管理 创建应用 选择“创建应用”,填写应用名称和描述之后单击“确定”完成创建。其中应用名称默认以“app_”开头,您也可以自行修改。 查看、重置或删除应用 您可以单击目标应用名称操作列的按钮完成应用的查询明文、重置或删除。创建完成后自动生成“AppKey/AppSecret”以供您后续调取接口进行APP鉴权使用。
非订阅算法和预置框架无法满足需求,否则不推荐使用。自定义镜像需上传至容器镜像服务(SWR),才能用于ModelArts Standard上训练。 自定义镜像的启动命令规范 用户遵循ModelArts镜像的规范要求制作镜像,选择自己的镜像,并且通过指定代码目录(可选)和启动命令的方式来创建的训练作业。
peed; sh ./scripts/obs_pipeline.sh Step2 配置数据输入和输出 单击“增加训练输入”和“增加训练输出”,用于配置训练作业开始时需要输入数据的路径和训练结束后输出数据的路径。 在“输入”的输入框内设置变量:ORIGINAL_TRAIN_DATA
peed; sh ./scripts/obs_pipeline.sh Step2 配置数据输入和输出 单击“增加训练输入”和“增加训练输出”,用于配置训练作业开始时需要输入数据的路径和训练结束后输出数据的路径。 在“输入”的输入框内设置变量:ORIGINAL_TRAIN_DATA
在创建训练作业页面配置环境变量“ROUTE_PLAN”,取值为“true”,具体操作请参见管理训练容器环境变量。 代码示例 训练作业的启动脚本示例如下。 启动脚本中设置plog生成后存放在“/home/ma-user/modelarts/log/modelarts-job-{id}/worker-{index}/”目