检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
ce格式的权重,默认true。 true表示转换格式,false表示不转换格式。 num_train_epochs 5 表示训练轮次,根据实际需要修改。一个Epoch是将所有训练样本训练一次的过程。 train-iters 10 非必填。表示训练step迭代次数,有默认值 seed
70b.sh 和0_pl_pretrain_13b.sh 。 修改模型训练脚本中的超参配置,必须修改的参数如表1所示。其他超参均有默认值,可以参考表1按照实际需求修改。 表1 训练超参配置说明 参数 示例值 参数说明 ORIGINAL_TRAIN_DATA_PATH /home/
denied。请依次排查: 请确保读取的OBS桶和Notebook处于同一站点区域,例如:都在华北-北京四站点。不支持跨站点访问OBS桶。具体请参见查看OBS桶与ModelArts是否在同一个区域。 请确认操作Notebook的账号有权限读取OBS桶中的数据。如没有权限,请参见在Model
r_private_ip}:3128" } 代理服务器IP即步骤二:使用Docker安装和配置正向代理中创建的ECS私有IP,获取方式请见查看弹性云服务器详细信息。 图4 ECS私有IP 调用公网地址时,使用服务URL进行业务请求,如: https://e8a048ce25136addbbac23ce6132a
ne-parallel-size,默认为1。 注意:权重转换完成后,需要将转换后的文件与原始Hugging Face模型中的文件进行对比,查看是否缺少如tokenizers.json、tokenizer_config.json、special_tokens_map.json等to
优化等高级特性,以提高训练效率和性能 stage sft 表示当前的训练阶段。可选择值:[pt、sft、rm、ppo、dpo],pt代表预训练,sft代表指令监督微调,rm代表奖励模型训练,ppo代表PPO训练,dpo代表DPO训练。 finetuning_type full 用
准备代码 本教程中用到的训练推理代码和如下表所示,请提前准备好。 获取模型软件包 本方案支持的模型对应的软件和依赖包获取地址如表1所示,模型列表、对应的开源权重获取地址如表2所示。 表1 模型对应的软件包和依赖包获取地址 代码包名称 代码说明 下载地址 AscendCloud-6
任务不同调整参数target-pipeline-parallel-size,默认为1。 权重转换完成后,需要将转换后的文件与原始Hugging Face模型中的文件进行对比,查看是否缺少如tokenizers.json、tokenizer_config.json、special_tokens_map.json等to
任务不同调整参数target-pipeline-parallel-size,默认为1。 权重转换完成后,需要将转换后的文件与原始Hugging Face模型中的文件进行对比,查看是否缺少如tokenizers.json、tokenizer_config.json、special_tokens_map.json等to
任务不同调整参数target-pipeline-parallel-size,默认为1。 权重转换完成后,需要将转换后的文件与原始Hugging Face模型中的文件进行对比,查看是否缺少如tokenizers.json、tokenizer_config.json、special_tokens_map.json等to
任务不同调整参数target-pipeline-parallel-size,默认为1。 权重转换完成后,需要将转换后的文件与原始Hugging Face模型中的文件进行对比,查看是否缺少如tokenizers.json、tokenizer_config.json、special_tokens_map.json等to
据。在这个过程中,就出现了ModelArts“代表”用户去访问其他云服务的情形。从安全角度出发,ModelArts代表用户访问任何云服务之前,均需要先获得用户的授权,而这个动作就是一个“委托”的过程。用户授权ModelArts再代表自己访问特定的云服务,以完成其在ModelArts平台上执行的AI计算任务。
AWQ(W4A16/W8A16)量化方案能显著降低模型显存以及需要部署的卡数。降低小batch下的增量推理时延。支持AWQ量化的模型列表请参见表3。 本章节介绍如何使用AWQ量化工具实现推理量化。 量化方法:W4A16 per-group/per-channel, W8A16 per-channel
AWQ(W4A16/W8A16)量化方案能显著降低模型显存以及需要部署的卡数。降低小batch下的增量推理时延。支持AWQ量化的模型列表请参见表3。 本章节介绍如何使用AWQ量化工具实现推理量化。 量化方法:W4A16 per-group/per-channel,W8A16 per-channel
--quiet --yes -n my-env python=3.6.5 创建完成后,执行conda info --envs命令查看现有的虚拟环境列表,可以看到my-env虚拟环境: sh-4.4$conda info --envs # conda environments: #
AWQ(W4A16/W8A16)量化方案能显著降低模型显存以及需要部署的卡数。降低小batch下的增量推理时延。支持AWQ量化的模型列表请参见支持的模型列表和权重文件。 本章节介绍如何在Notebook使用AWQ量化工具实现推理量化。 量化方法:W4A16 per-group/per-channel
Server存储 Server服务器支持SFS、OBS、EVS三种云存储服务,提供了多种场景下的存储解决方案,主要区别如下表所示。若需要对本地盘进行配置,请参考物理机环境配置。 表1 表1 SFS、OBS、EVS服务对比 对比维度 弹性文件服务SFS 对象存储服务OBS 云硬盘EVS 概念 提
ppk文件”(由Step2密钥对.pem文件生成)。 单击“Open”。如果首次登录,PuTTY会显示安全警告对话框,询问是否接受服务器的安全证书。单击“Accept”将证书保存到本地注册表中。 图6 询问是否接受服务器的安全证书 成功连接到云上Notebook实例。 图7 连接到云上Notebook实例
AWQ(W4A16/W8A16)量化方案能显著降低模型显存以及需要部署的卡数。降低小batch下的增量推理时延。支持AWQ量化的模型列表请参见支持的模型列表和权重文件。 本章节介绍如何在Notebook使用AWQ量化工具实现推理量化。 量化方法:W4A16 per-group/per-channel
AWQ(W4A16/W8A16)量化方案能显著降低模型显存以及需要部署的卡数。降低小batch下的增量推理时延。支持AWQ量化的模型列表请参见表3。 本章节介绍如何使用AWQ量化工具实现推理量化。 量化方法:W4A16 per-group/per-channel,W8A16 per-channel