检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
数据量和质量均满足要求,为什么盘古大模型微调效果不好 这种情况可能是由于以下原因导致的,建议您排查: 训练参数设置:您可以通过绘制Loss曲线查询来确认模型的训练过程是否出现了问题,这种情况大概率是由于训练参数设置的不合理而导致了欠拟合或过拟合。请检查训练参数中的 “训练轮次”或“学习率”等参
符号、乱码等字符。这种情况可能是由于以下几个原因导致的,建议您依次排查: 数据质量:请检查训练数据中是否存在包含异常字符的数据,可以通过规则进行清洗。 训练参数设置:若数据质量存在问题,且因训练参数设置的不合理而导致过拟合,该现象会更加明显。请检查训练参数中的 “训练轮次”或“学
(目标任务相同),回答却完全错误。这种情况可能是由于以下几个原因导致的,建议您依次排查: 训练参数设置:您可以通过绘制Loss曲线查询来确认模型的训练过程是否出现了问题,这种情况大概率是由于训练参数设置的不合理而导致了过拟合。请检查训练参数中的 “训练轮次”或“学习率”等参数的设
样本差异很小的问题,回答完全错误。这种情况可能是由于以下几个原因导致的,建议您依次排查: 训练参数设置:您可以通过绘制Loss曲线查询来确认模型的训练过程是否出现了问题,这种情况大概率是由于训练参数设置的不合理而导致了欠拟合,模型没有学到任何知识。请检查训练参数中的 “训练轮次”
数据质量:请检查训练数据中是否存在文本重复的异常数据,可以通过规则进行清洗。 训练参数设置:若数据质量存在问题,且因训练参数设置的不合理而导致过拟合,该现象会更加明显。请检查训练参数中的 “训练轮次”或“学习率”等参数的设置,适当降低这些参数的值,降低过拟合的风险。 父主题: 大模型微调训练类
updated_at String 更新时间。 state String 任务状态。 RUNNING:表示任务运行中。 PENDING:表示任务等待中。 SUCCEEDED:表示任务运行成功。 FAILED:表示任务运行失败。 input TaskInputDto object 输入数据的信息。
updated_at String 更新时间。 state String 任务状态。 RUNNING:表示任务运行中。 PENDING:表示任务等待中。 SUCCEEDED:表示任务运行成功。 FAILED:表示任务运行失败。 input TaskInputDto object 输入数据的信息。
每个批次数据大小。批量大小越大,训练速度越快,但是也会占用更多的内存资源,并且可能导致收敛困难或者过拟合;批量大小越小,内存消耗越小,但是收敛速度会变慢,同时模型更容易受到数据噪声的影响,从而导致模型收敛困难。 您可根据数据和模型的规模进行调整。一般来说,如果数据量级很小或模型参
模型训练前,需要对微调数据进行加工,防止某些特征存在极端异常值或大面积错误数据,导致模型训练不稳定。可能会引发如下问题: 模型对异常值过度敏感,导致拟合异常值而非整体数据分布。 训练过程中损失波动较大,甚至出现梯度爆炸。 模型在测试集上表现不佳,泛化能力差。 通过统计学方法如计算四分位距、Z-score、样本分布等排查异常值。
符号、乱码等字符。这种情况可能是由于以下几个原因导致的,建议您依次排查: 数据质量:请检查训练数据中是否存在包含异常字符的数据,可以通过规则进行加工。 训练参数设置:若数据质量存在问题,且因训练参数设置的不合理而导致过拟合,该现象会更加明显。请检查训练参数中的“训练轮次”或“学习
审计 云审计服务(Cloud Trace Service,CTS)是华为云安全解决方案中专业的日志审计服务,提供对各种云资源操作记录的收集、存储和查询功能,可用于支撑安全分析、合规审计、资源跟踪和问题定位等常见应用场景。 用户开通云审计服务并创建、配置追踪器后,CTS可记录用户使用盘古的管理事件和数据事件用于审计。
Rate)是模型训练中最重要的超参数之一,它直接影响模型的收敛速度和最终性能: 学习率过高,会导致损失在训练初期快速下降,但随后波动较大,甚至出现NaN(梯度爆炸)的问题。 学习率过低,会导致损失下降非常缓慢,训练过程耗时较长,模型可能陷入局部最优等问题。 科学计算大模型的学习率调优策略如下:
模型训练前,需要对数据进行加工,防止某些特征存在极端异常值或大面积错误数据,导致模型训练不稳定。可能会引发如下问题: 模型对异常值过度敏感,导致拟合异常值而非整体数据分布。 训练过程中损失波动较大,甚至出现梯度爆炸。 模型在测试集上表现不佳,泛化能力差。 通过统计学方法如计算四分位距、Z-score、样本分布等排查异常值。
查看提示词评估结果 评估任务创建完成后,会跳转至“评估”页面,在该页面可以查看评估状态。 图1 查看提示词评任务状态 单击“评估名称”,进入评估任务详情页,可以查看详细的评估进度,例如在图2中有10条评估用例,当前已评估8条,剩余2条待评估。 图2 查看评估进展 评估完成后,可以查看每条数据的评估结果。
数(如去重、计数、平均、最大、最小、合计)、分组、排序、比较、条件(逻辑操作、离散条件、范围区间等条件的混合和嵌套)、日期操作,支持多表关联查询。 与非专业大模型相比,专业大模型针对特定场景优化,更适合执行数据分析、报告生成和业务洞察等任务。 ModelArts Studio大模
每个批次数据大小。批量大小越大,训练速度越快,但是也会占用更多的内存资源,并且可能导致收敛困难或者过拟合;批量大小越小,内存消耗越小,但是收敛速度会变慢,同时模型更容易受到数据噪声的影响,从而导致模型收敛困难。 您可根据数据和模型的规模进行调整。一般来说,如果数据量级很小或模型参
模型训练前,需要对数据进行加工,防止某些特征存在极端异常值或大面积错误数据,导致模型训练不稳定。可能会引发如下问题: 模型对异常值过度敏感,导致拟合异常值而非整体数据分布。 训练过程中损失波动较大,甚至出现梯度爆炸。 模型在测试集上表现不佳,泛化能力差。 优化调整策略如下: 通过统计学方法如计算
即被判定为账户欠费。欠费可能会影响云服务资源的正常运行,因此需要及时充值。预付费模式购买后不涉及欠费。 服务按时长计费的,当余额不足以支付当前费用时,账户将被判定为欠费。由于盘古NLP大模型不涉及物理实体资源,因此无宽限期。欠费后继续调用服务会导致账户冻结,并直接进入保留期,保
参数-类型-解释表中\n\n以下是你的思考过程:\n步骤1.根据用户问题从指标-解释表中得到metrics中caption的值,格式为:\"metrics\":[{\"caption\":\"xx\"}],不要超过两个\n步骤2.根据用户问题从参数-类型-解释表中得到dimens
如果学习率过小,模型的收敛速度将变得非常慢。 训练轮数 表示完成全部训练数据集训练的次数。每个轮次都会遍历整个数据集一次。 Lora矩阵的轶 较高的取值意味着更多的参数被更新,模型具有更大的灵活性,但也需要更多的计算资源和内存。较低的取值则意味着更少的参数更新,资源消耗更少,但模型的表达能力可能受到限制。