检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
当数据清洗任务运行成功后,状态将从“运行中”变为“运行成功”,表示数据已经完成清洗。 在完成数据清洗后,在“数据清洗”页面单击操作列“生成”,生成加工数据集。 加工后的数据集可在“数据工程 > 数据加工 > 加工数据集”中查看。 父主题: 加工气象类数据集
不要有语义重复,并且需要与前文要求中的key名字保持一致,否则模型会不理解是同一个key。 恰当的表述 可以尝试从英语的逻辑去设计提示词。 最好是主谓宾结构完整的句子,少用缩写和特殊句式。 应使用常见的词汇和语言表达方式,避免使用生僻单词和复杂的句式,防止机器理解偏差。 多用肯定句,少用否定句,比如“你不能A
当数据清洗任务运行成功后,状态将从“运行中”变为“运行成功”,表示数据已经完成清洗。 在完成数据清洗后,如果无需使用数据合成与数据标注功能,可直接在“数据清洗”页面单击操作列“生成”,生成加工数据集。 加工后的数据集可在“数据工程 > 数据加工 > 加工数据集”中查看。 父主题: 加工文本类数据集
当数据清洗任务运行成功后,状态将从“运行中”变为“运行成功”,表示数据已经完成清洗。 在完成数据清洗后,如果无需使用数据标注功能,可直接在“数据清洗”页面单击操作列“生成”,生成加工数据集。 加工后的数据集可在“数据工程 > 数据加工 > 加工数据集”中查看。 父主题: 加工图片类数据集
配比文本类数据集 数据配比是将多个数据集按照特定比例关系组合并发布为“发布数据集”的过程,确保数据的多样性、平衡性和代表性。 如果单个数据集已满足您的需求,可跳过此章节至流通文本类数据集。 创建文本类数据集配比任务 创建文本类数据集配比任务步骤如下: 登录ModelArts St
击进入所需空间。 在左侧导航栏中选择“模型开发 > 模型评测”,单击界面右上角“创建评测任务”。 在“创建评测任务”页面,参考表1完成部署参数设置。 表1 NLP大模型自动评测任务参数说明 参数分类 参数名称 参数说明 选择服务 模型来源 选择“NLP大模型”。 服务来源 支持已
流通操作。 当任务状态显示为“运行成功”时,说明数据流通任务执行成功,生成的“发布数据集”可在“数据工程 > 数据发布 > 发布数据集”中查看。 父主题: 发布图片类数据集
单击进入“训练结果”页签,单击“发布”。 图1 训练结果页面 填写资产名称、描述,选择对应的可见性,单击“确定”发布模型。 发布后的模型会作为模型资产同步显示在“空间资产 > 模型”列表中。 父主题: 训练科学计算大模型
单击进入“训练结果”页签,单击“发布”。 图1 训练结果页面 填写资产名称、描述,选择对应的可见性,单击“确定”发布模型。 发布后的模型会作为模型资产同步显示在“空间资产 > 模型”列表中。 父主题: 训练NLP大模型
单击进入“训练结果”页签,单击“发布”。 图1 训练结果页面 填写资产名称、描述,选择对应的可见性,单击“确定”发布模型。 发布后的模型会作为模型资产同步显示在“空间资产 > 模型”列表中。 父主题: 训练CV大模型
单击进入“训练结果”页签,单击“发布”。 图1 训练结果页面 填写资产名称、描述,选择对应的可见性,单击“确定”发布模型。 发布后的模型会作为模型资产同步显示在“空间资产 > 模型”列表中。 父主题: 训练预测大模型
可将预置模型部署为预置服务,用于后续的调用操作。 其中,NLP预置模型使用流程见图1、表1,科学计算预置模型使用流程见图2、表2。 图1 NLP预置模型使用流程图 表1 NLP预置模型使用流程表 流程 子流程 说明 操作指导 准备工作 申请试用盘古大模型服务 盘古大模型为用户提供
流通操作。 当任务状态显示为“运行成功”时,说明数据流通任务执行成功,生成的“发布数据集”可在“数据工程 > 数据发布 > 发布数据集”中查看。 父主题: 发布文本类数据集
eu/datasets,查找名称中包含ERA5和pressure levels的数据集。 表面变量数据下载链接:https://cds.climate.copernicus.eu/datasets,查找名称中包含ERA5和single levels的数据集。 海洋模型 需包含5个表面层特征(10m
并使用他们进行日常管理工作。 用户 由账号在IAM中创建的用户,是云服务的使用人员,具有身份凭证(密码和访问密钥)。 在我的凭证下,您可以查看账号ID和用户ID。通常在调用API的鉴权过程中,您需要用到账号、用户和密码等信息。 区域(Region) 从地理位置和网络时延维度划分,
truncated:必选字段,取值0或1,表示标注内容是否被截断(0表示被截断、1表示没有截断)。 occluded:必选字段,取值0或1,表示标注内容是否被遮挡(0表示未遮挡、1表示遮挡) difficult:必选字段,取值0或1,表示标注目标是否难以识别(0表示容易识别、1表示难易识别)。 con
发 > 模型部署”,在“我的服务”页签,模型部署列表单击模型名称,在“详情”页签中,可获取模型的部署ID。 图3 部署后的模型调用路径 若调用预置模型,可在左侧导航栏中选择“模型开发 > 模型部署”,在“预置服务”页签,模型列表单击“调用路径”,获取该模型的部署ID。 图4 预置模型的调用路径
为什么微调后的盘古大模型的回答中会出现乱码 为什么微调后的盘古大模型的回答会异常中断 为什么微调后的盘古大模型只能回答训练样本中的问题 为什么在微调后的盘古大模型中输入训练样本问题,回答完全不同 为什么微调后的盘古大模型评估结果很好,但实际场景表现很差 为什么多轮问答场景的盘古大模型微调效果不好 数
推理SDK概述 盘古大模型推理SDK是对REST API进行的封装,通过该SDK可以处理用户的输入,生成模型的回复,从而实现自然流畅的对话体验。 表1 推理SDK清单 SDK分类 SDK功能 支持语言 使用场景 推理SDK 对话问答(/chat/completions) Java、Python、Go、
取、数据转换、数据过滤三类,文本类加工算子能力清单见表1。 表1 文本类清洗算子能力清单 算子分类 算子名称 算子描述 数据提取 WORD内容提取 从Word文档中提取文字,并保留原文档的目录、标题和正文等结构,不保留图片、表格、公式、页眉、页脚。 TXT内容提取 从TXT文件中提取所有文本内容。