检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
String 容器中的日志路径。 表9 PersistentVolumes 参数 参数类型 描述 name String 存储卷的名称。 mount_path String 存储卷在容器中的挂载路径。如:/tmp。请不要挂载在系统目录下,如“/”、“/var/run”等,会导致容器异常。建
行筛选。 难例集:难例或非难例。 标签:您可以选择全部标签,或者基于您指定的标签,选中其中一个或多个。 文件名或目录:根据文件名称或者文件存储目录筛选。 标注人:选择执行标注操作的账号名称。 样本属性:表示自动分组生成的属性。只有启用了自动分组任务后才可使用此筛选条件。 数据属性
功能与JupyterLab相同。 常用操作指导可参见JupyterLab操作指导:JupyterLab常用功能介绍。 由于CodeLab的存储为系统默认路径,在使用“上传文件”或“下载文件至本地”时,只能使用JupyterLab页面提供的功能。 如需使用大文件上传和下载的功能,建
创建数据集:前往创建数据集页面创建一个新的数据集。具体操作请参考创建ModelArts数据集。 “输出路径” 选择自动学习数据输出的统一OBS路径。 说明: “输出路径”是存储自动学习在运行过程中所有产物的路径。 “训练规格” 选择自动学习训练节点所使用的资源规格,以实际界面显示为准,将会根据不同的规格计费。 说明:
修改文件 opencompass/configs/datasets/mmlu/mmlu_ppl_ac766d.py 中的 fix_id_list, 将最大值适当调低。 ppl困惑度评测一般用于base权重测评,会将n个选项上拼接上下文,形成n个序列,再计算这n个序列的困惑度(pe
修改文件 opencompass/configs/datasets/mmlu/mmlu_ppl_ac766d.py 中的 fix_id_list, 将最大值适当调低。 ppl困惑度评测一般用于base权重测评,会将n个选项上拼接上下文,形成n个序列,再计算这n个序列的困惑度(pe
修改文件 opencompass/configs/datasets/mmlu/mmlu_ppl_ac766d.py 中的 fix_id_list, 将最大值适当调低。 ppl困惑度评测一般用于base权重测评,会将n个选项上拼接上下文,形成n个序列,再计算这n个序列的困惑度(pe
1:难例样本 import_origin String 根据数据来源筛选。 kvp String CT剂量,通过剂量来筛选。 label_list SearchLabels object 标签搜索条件。 labeler String 标注人。 metadata SearchProp
修改文件 opencompass/configs/datasets/mmlu/mmlu_ppl_ac766d.py 中的 fix_id_list, 将最大值适当调低。 ppl困惑度评测一般用于base权重测评,会将n个选项上拼接上下文,形成n个序列,再计算这n个序列的困惑度(pe
修改文件 opencompass/configs/datasets/mmlu/mmlu_ppl_ac766d.py 中的 fix_id_list, 将最大值适当调低。 ppl困惑度评测一般用于base权重测评,会将n个选项上拼接上下文,形成n个序列,再计算这n个序列的困惑度(pe
# ctr 工具查看 ctr -n k8s.io image list # 或 crictl image # nerdctl 工具查看 nerdctl --namespace k8s.io image list 步骤三 构建ModelArts Lite训练镜像 获取模型软件包,并上传到机器SFS
PTA_TORCHAIR_DECODE_GEAR_ENABLE=1 # 开启动态分档功能 export PTA_TORCHAIR_DECODE_GEAR_LIST=2,4,6,8,16,32 # 设置动态分档的挡位,根据实际情况设置,另外请不要设置挡位1 export VLLM_ENGINE
PTA_TORCHAIR_DECODE_GEAR_ENABLE=1 # 开启动态分档功能 export PTA_TORCHAIR_DECODE_GEAR_LIST=2,4,6,8,16,32 # 设置动态分档的挡位,根据实际情况设置,另外请不要设置挡位1 export VLLM_ENGINE
# ctr 工具查看 ctr -n k8s.io image list # 或 crictl image # nerdctl 工具查看 nerdctl --namespace k8s.io image list 步骤三 构建ModelArts Lite训练镜像 获取模型软件包,并上传到机器SFS
# ctr 工具查看 ctr -n k8s.io image list # 或 crictl image # nerdctl 工具查看 nerdctl --namespace k8s.io image list 步骤三 构建ModelArts Lite训练镜像 获取模型软件包,并上传到机器SFS
# ctr 工具查看 ctr -n k8s.io image list # 或 crictl image # nerdctl 工具查看 nerdctl --namespace k8s.io image list 步骤三 构建ModelArts Lite训练镜像 获取模型软件包,并上传到机器SFS
s.vm.cpu.2u的Notebook中,部署本地Predictor,其运行环境就是cpu.2u。 部署在线服务Predictor,即将存储在OBS中的模型文件部署到线上服务管理模块提供的容器中运行,其环境规格(如CPU规格,GPU规格)由表3 predictor configs结构决定。
sold_out Boolean 资源是否充足。 true 资源不足 false 资源充足 storages Array of strings 规格支持的存储类型。 EFS EVS vcpus Integer CPU核数。 表5 AscendInfo 参数 参数类型 描述 npu Integer
本案例需要创建一个Notebook,以便能够通过它访问SFS Turbo服务。随后,通过Notebook将OBS中的数据上传至SFS Turbo,并对存储在SFS Turbo中的数据执行编辑操作。 预训练 预训练 介绍如何进行预训练,包括训练数据处理、超参配置、创建训练任务及性能查看。 微调训练
秩表示的可训练参数的数量。权重矩阵被分解为经过训练和更新的低秩矩阵。所有预训练的模型参数保持冻结。训练后,低秩矩阵被添加回原始权重。这使得存储和训练LoRA模型更加高效,因为参数明显减少。 超参数设置,基于训练作业配置超参。超参指的是模型训练时原始数据集中实际字段和算法需要字段之间的映射关系。