检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
Gallery在线推理服务部署模型。 如果使用自定义镜像进行训练,操作步骤可以参考使用AI Gallery微调大师训练模型,其中“训练任务类型”默认选择“自定义”,且不支持修改。 如果使用自定义镜像进行部署推理服务,操作步骤可以参考使用AI Gallery在线推理服务部署模型,
"application/json" } } ] 将AI应用部署为在线服务 参考部署为在线服务将AI应用部署为在线服务。 在线服务创建成功后,您可以在服务详情页查看服务详情。 您可以通过“预测”页签访问在线服务。 图5 访问在线服务 父主题: Standard推理部署
数据集文件有以下限制: 如果您使用2u8g规格,测试建议数据集文件应小于10MB。当文件大小符合限制要求,如果存在极端的数据规模(行数列数之积)时,仍可能会导致训练失败,建议的数据规模低于10000。 如果您使用8u32g规格,测试建议数据集文件应小于100MB。当文件大小符合限
一些常用的指标,如准确率、召回率、AUC等,能帮助您有效的评估,最终获得一个满意的模型。 部署模型 模型的开发训练,是基于之前的已有数据(有可能是测试数据),而在得到一个满意的模型之后,需要将其应用到正式的实际数据或新产生数据中,进行预测、评价、或以可视化和报表的形式把数据中的高价值信息
--quantization-param-path kv_cache_scales.json #输入Step2 抽取kv-cache量化系数生成的json文件路径; 如果只测试推理功能和性能,不需要此json文件,此时scale系数默认为1,但是可能会造成精度下降。 父主题: 推理模型量化
于昇腾推理。 精度性能检查工具 Benchmark精度检查工具,可以转换模型后执行推理前,使用其对MindSpore Lite模型进行基准测试,它不仅可以对MindSpore Lite模型前向推理执行耗时进行定量分析(性能),还可以通过指定模型输出进行可对比的误差分析(精度)。 模型自动调优工具
SampleLabels objects 视频在线服务推理结果。 service_id String 在线服务ID。 service_name String 在线服务名称。 service_resource String 用户绑定的在线服务资源ID。 total_sample_count
服务预测 服务预测失败 服务预测失败,报错APIG.XXXX 在线服务预测报错ModelArts.4206 在线服务预测报错ModelArts.4302 在线服务预测报错ModelArts.4503 在线服务预测报错MR.0105 Method Not Allowed 请求超时返回Timeout
”。管理员不做权限控制,此处默认使用普通用户委托即可。 勾选“我已经详细阅读并同意《 ModelArts服务声明 》”,单击“创建”。 测试管理员用户权限。 使用管理员用户登录ModelArts管理控制台。在登录页面,请使用“IAM用户登录”方式进行登录。 首次登录会提示修改密码,请根据界面提示进行修改。
步骤六:预测分析 运行完成的工作流会自动部署相应的在线服务,您只需要在相应的服务详情页面进行预测即可。 在服务部署节点单击“实例详情”或者在ModelArts管理控制台,选择“模型部署 > 在线服务”,单击生成的在线服务名称,即可进入在线服务详情页。 在服务详情页,单击选择“预测”页签。
步骤六:预测分析 运行完成的工作流会自动部署相应的在线服务,您只需要在相应的服务详情页面进行预测即可。 在服务部署节点单击“实例详情”或者在ModelArts管理控制台,选择“模型部署 > 在线服务”,单击生成的在线服务名称,即可进入在线服务详情页。 在服务详情页,单击选择“预测”页签。
按需计费规格,使用完之后请及时停止Workflow,避免产生不必要的费用。 测试推理服务:工作流运行完成后,在服务部署节点右侧单击“实例详情”跳转至推理服务详情页。或者在ModelArts管理控制台,选择“部署上线>在线服务”,找到部署的推理服务,单击服务名称,进入服务详情页。单击“预测”,右边可查看预测结果。
模型的端口没有配置,如您在自定义镜像配置文件中修改了端口号,需要在部署模型时,配置对应的端口号,使新的模型重新部署服务。 如何修改默认端口号,请参考使用自定义镜像创建在线服务,如何修改默认端口。 父主题: 服务部署
将模型部署为实时推理作业 实时推理的部署及使用流程 部署模型为在线服务 访问在线服务支持的认证方式 访问在线服务支持的访问通道 访问在线服务支持的传输协议 父主题: 使用ModelArts Standard部署模型并推理预测
登录ModelArts控制台,在自动学习作业列表中,删除正在扣费的自动学习作业。在训练作业列表中,停止因运行自动学习作业而创建的训练作业。在在线服务列表中,停止因运行自动学习作业而创建的服务。操作完成后,ModelArts服务即停止计费。 登录OBS控制台,进入自己创建的OBS桶中
更新管理 ModelArts在线服务更新 对于已部署的推理服务,ModelArts支持通过更换AI应用的版本号,实现服务升级。 推理服务有三种升级模式:全量升级、滚动升级(扩实例)和滚动升级(缩实例)。了解三种升级模式的流程,请参见图1。 全量升级 需要额外的双倍的资源,先全量创建新版本实例,然后再下线旧版本实例。
一个账号最多创建10个Notebook。 否 更多信息,请参见创建Notebook实例。 Standard推理部署在线服务 单个账号最多可创建20个在线服务。 是 提交工单申请提升配额 更多信息,请参见部署在线服务。 Standard推理部署批量服务 单个账号最多可创建1000个批量服务。 否 更多信息,请参见部署批量服务。
服务运维阶段,先利用镜像构建AI应用,接着部署AI应用为在线服务,然后可在云监控服务(CES)中获得ModelArts推理在线服务的监控数据,最后可配置告警规则实现实时告警通知。 业务运行阶段,先将业务系统对接在线服务请求,然后进行业务逻辑处理和监控设置。 图1 推理服务的端到端运维流程图
(Press CTRL+C to quit) Step7 推理请求 使用命令测试推理服务是否正常启动。服务启动命令中的参数设置请参见表1。 方式一:通过OpenAI服务API接口启动服务使用以下推理测试命令。${docker_ip}替换为实际宿主机的IP地址。如果启动服务未添加s
PyTorch、TensorFlow和MindSpore等引擎的AI模型。 支持通过JupyterLab工具在线打开Notebook,具体请参见通过JupyterLab在线使用Notebook实例进行AI开发。 支持本地IDE的方式开发模型,通过开启SSH连接,用户本地IDE可以