检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
若需要部署量化模型,需在Notebook中进行模型权重转换后再部署推理服务。 在推理生产环境中部署推理服务 介绍如何创建AI应用,部署模型并启动推理服务,在线预测服务。 父主题: 主流开源大模型基于Standard适配PyTorch NPU推理指导(6.3.907)
测试推理服务:工作流运行完成后,在服务部署节点右侧单击“实例详情”跳转至推理服务详情页。或者在ModelArts管理控制台,选择“部署上线>在线服务”,找到部署的推理服务,单击服务名称,进入服务详情页。单击“预测”,右边可查看预测结果。 图6 预测样例图 图7 预测结果 父主题: 使用Workflow实现低代码AI开发
等插件。完成Cluster资源池的购买后,您即可对资源进行配置,并将数据上传至存储云服务中。当您需要使用集群资源时,可以使用kubectl工具或k8s API来下发作业。此外,ModelArts还提供了扩缩容、驱动升级等功能,方便您对集群资源进行管理。 图2 使用流程 推荐您根据以下使用流程对Lite
dataset:数据集 obs:OBS swr:SWR model_list:AI应用列表 label_task:标注任务 service:在线服务 conditions 否 Array of Constraint objects 数据约束条件。 value 否 Map<String
dataset:数据集 obs:OBS swr:SWR model_list:AI应用列表 label_task:标注任务 service:在线服务 conditions 否 Array of Constraint objects 数据约束条件。 value 否 Map<String
dataset:数据集 obs:OBS swr:SWR model_list:AI应用列表 label_task:标注任务 service:在线服务 conditions 否 Array of Constraint objects 数据约束条件。 value 否 Map<String
例如TensorFlow、PyTorch等,但是实际开发中,通常还需要安装其他依赖包,此时可以通过Terminal连接到环境里操作。 单击工具栏“Tools >Start SSH session”,选择SSH Configuration中配置的开发环境。可以执行pip install安装所需要的包。
requirements-test.txt pip install tensorboard Step5 获取训练数据集 使用img2dataset工具下载数据集。首先需要在容器安装img2dataset,安装命令如下。 pip install img2dataset 参考官方指导下载开源mscoco数据集。
由于ModelArts创建训练作业时,需要将作业日志输出至OBS桶中,因此创建OBS桶为必选项。用户可通过OBS Browser+、obsutil等工具访问和管理OBS桶,将代码、模型文件、数据集等数据上传或下载进行备份。 创建VPC 虚拟私有云(Virtual Private Cloud
|──llm_inference # 推理代码包 |──llm_tools # 推理工具 工作目录介绍 详细的工作目录参考如下,建议参考以下要求设置工作目录。训练脚本以分类的方式集中在 scripts 文件夹中。 ${work
由于ModelArts创建训练作业时,需要将作业日志输出至OBS桶中,因此创建OBS桶为必选项。用户可通过OBS Browser+、obsutil等工具访问和管理OBS桶,将代码、模型文件、数据集等数据上传或下载进行备份。 创建VPC 虚拟私有云(Virtual Private Cloud
由于ModelArts创建训练作业时,需要将作业日志输出至OBS桶中,因此创建OBS桶为必选项。用户可通过OBS Browser+、obsutil等工具访问和管理OBS桶,将代码、模型文件、数据集等数据上传或下载进行备份。 创建VPC 虚拟私有云(Virtual Private Cloud
# 推理代码包 |──llm_tools # 推理工具 |——AscendCloud-OPP #依赖算子包 工作目录介绍 详细的工作目录参考如下,建议参考以下要求
建和管理等。一般用户选择此项即可。 如何获取访问密钥AK/SK? 如果在其他功能(例如PyCharmtoolKit/VSCode登录,访问在线服务等)中使用到访问密钥AK/SK认证,获取AK/SK方式请参考如何获取访问密钥章节。 如何删除已有委托列表下面的委托名称? 图8 已有委托
评测动态性能脚本 ├── generate_dataset.py # 生成自定义数据集的脚本 ├── benchmark_utils.py # 工具函数集 ├── benchmark.py # 执行静态、动态性能评测脚本 ├── requirements.txt
# 推理代码包 |──llm_tools # 推理工具 工作目录介绍 详细的工作目录参考如下,建议参考以下要求设置工作目录。训练脚本以分类的方式集中在scripts文件夹中。 ${workdi
评测动态性能脚本 ├── generate_dataset.py # 生成自定义数据集的脚本 ├── benchmark_utils.py # 工具函数集 ├── benchmark.py # 执行静态,动态性能评测脚本、 ├── requirements.txt
开发环境的Notebook,根据不同的工作环境,对应支持的镜像和版本有所不同。 表3 Notebook支持的镜像 镜像名称 镜像描述 适配芯片 支持SSH远程开发访问 支持在线JupyterLab访问 pytorch1.8-cuda10.2-cudnn7-ubuntu18.04 CPU、GPU通用算法开发和训练基础镜像,预置AI引擎PyTorch1
dataset:数据集 obs:OBS swr:SWR model_list:AI应用列表 label_task:标注任务 service:在线服务 conditions Array of Constraint objects 数据约束条件。 value Map<String,Object>
评测动态性能脚本 ├── generate_dataset.py # 生成自定义数据集的脚本 ├── benchmark_utils.py # 工具函数集 ├── benchmark.py # 执行静态、动态性能评测脚本 ├── requirements.txt