检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
1:6379 华为云RDS 否 host信息。 用户认证信息。 云数据库RDS: https://support.huaweicloud.com/rds/index.html - Mysql 否 host信息。 用户认证信息。 Mysql官网: https://www.mysql.com/
实例化Tool Tool分为StaticTool(静态工具)和DynamicTool(动态工具)两类。静态工具需要开发者事先定义好,即在编译期定义与实例化。对于动态工具,开发者可以在系统运行时动态构建,即在运行态定义与实例化。 StaticTool(静态工具) 静态工具可以通过注解的方式
实例化Tool Tool分为StaticTool(静态工具)和DynamicTool(动态工具)两类,静态工具需要开发者事先定义好,即在编译期定义与实例化;动态工具开发者可以在系统运行时动态构建,即在运行态定义与实例化。 StaticTool(静态工具) 静态工具可以通过继承Tool的
安装SDK pip直接安装 执行如下命令: pip install pangu_kits_app_dev_py 本地导入 从support网站上下载pangu-kits-app-dev-py的whl包。 建议使用conda创建一个新的python环境,python版本选择3.9。
语义缓存是一种基于向量和相似度的缓存方法,它可以实现对数据的语义匹配和查询。语义缓存可以根据不同的向量存储、相似算法、评分规则和阈值进行配置,并且可以使用不同的词向量模型进行嵌入。 from pangukitsappdev.api.memory.cache.cache_config import
Asia/Shanghai ; # # sdk.memory.rds.url= # sdk.memory.rds.user= # sdk.memory.rds.password= # sdk.memory.rds.poolSize= ################################
语义缓存:语义缓存是一种基于向量和相似度的缓存方法,它可以实现对数据的语义匹配和查询。语义缓存可以根据不同的向量存储、相似算法、评分规则和阈值进行配置,并且可以使用不同的词向量模型进行嵌入。 import com.huaweicloud.pangu.dev.sdk.api.embedings.Embeddings;
agent.add_tool(AddTool()) agent.add_tool(SearchTool()) 静态工具和动态工具的注册方式相同,通过addTool接口进行注册。 通过set_max_iterations可以设置最大迭代次数,控制Agent子规划的最大迭代步数,防止无限制的迭代或出现死循环情况。
提示词变量是一种可以在文本生成中动态替换的占位符,用于根据不同的场景或用户输入生成不同的内容。其中,变量名称可以是任意的文字,用于描述变量的含义或作用。 提示词评估数据集约束限制 上传文件限xlsx格式。 数据行数不小于10行,不大于50行。 数据不允许相同表头,表头数量小于20个。
审计 云审计服务(Cloud Trace Service,CTS)是华为云安全解决方案中专业的日志审计服务,提供对各种云资源操作记录的收集、存储和查询功能,可用于支撑安全分析、合规审计、资源跟踪和问题定位等常见应用场景。 用户开通云审计服务并创建、配置追踪器后,CTS可记录用户使用盘古的管理事件和数据事件用于审计。
Asia/Shanghai ; # # sdk.memory.rds.url= # sdk.memory.rds.user= # sdk.memory.rds.password= # sdk.memory.rds.poolSize= ################################
撰写提示词时,可以设置提示词变量,即在提示词中通过添加占位符{{ }}标识,表示一些动态的信息,让模型根据不同的情况生成不同的文本,增加模型的灵活性和适应性。例如,将提示词设置为“你是一个旅游助手,需要给用户介绍旅行地的风土人情。请介绍一下{{location}}的风土人情。”在评估提示词
History缓存,用于存储历史对话信息,辅助模型理解上下文信息,历史消息对有固定窗口、消息摘要等策略。 初始化:消息记录支持不同的存储方式, 如内存、DCS(Redis)和RDS(Sql)。 from pangukitsappdev.memory.sql_message_history import SQLMessageHistory
History缓存,用于存储历史对话信息,辅助模型理解上下文信息,历史消息对有固定窗口、消息摘要等策略。 初始化:消息记录支持不同的存储方式,如内存、DCS(Redis)、RDS(Sql)。 import com.huaweicloud.pangu.dev.sdk.api.memory.config.MessageHistoryConfig;
@huaweicloud/huaweicloud-sdk-pangulargemodels 在线生成SDK代码 API Explorer可根据需要动态生成SDK代码功能,降低您使用SDK的难度,推荐使用。 您可以在API Explorer中具体API页面的“代码示例”页签查看对应编程语言类型的SDK代码。
如果您没有专业的调优经验,可以优先使用建议,再结合推理的效果动态调整。 核采样(top_p) 0~1 1 核采样主要用于控制模型输出的多样性。核采样值越大,输出的多样性越高;核采样值越小,输出结果越可以被预测,确定性相对也就越高。 您可根据真实的任务类型进行调整。一般来说,如果目标任务的需要生成更具
rovider将由用户自定义,后续会有例子说明。 上述例子使用的向量数据库配置指定索引名称,以及使用name和description作为向量化字段,因此工具入库时,会将工具的name和description进行向量化,并在后续的检索中生效。 注意,上述tool_list中包含的工
致欠拟合。 您可根据任务难度和数据规模进行调整。一般来说,如果目标任务的难度较大或数据量级很小,可以使用较大的训练轮数,反之可以使用较小的训练轮数。 如果您没有专业的调优经验,可以优先使用平台提供的默认值,再结合训练过程中模型的收敛情况动态调整。 数据批量大小(batch_size)
训练损失值(Training Loss)是一种衡量模型预测结果和真实结果差距的指标,通常情况下越小越好。 一般来说,一个正常的Loss曲线是单调递减的,即随着训练的进行,Loss值不断减小,直到收敛到一个较小的值。以下给出了几种正常的Loss曲线形式: 图2 正常的Loss曲线:平滑下降 图3 正常的Loss曲线:阶梯下降
使用API调用模型 用户可以通过API调用盘古大模型服务提供的基模型以及用户训练后的模型。训练后的模型需使用“在线部署”,才可以使用本章节提供的方法进行调用。本章节分别介绍使用Postman调用API和多语言(Java/Python/Go)调用API的方法,仅供测试使用。 前提条件 使用AP