检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
分别选择“数据处理资源”和“模型训练资源”,即用于数据处理和模型训练的资源池和资源类型。 资源池可选“公共资源池”和“专属资源池”。 “公共资源池”:提供公共的大规模计算集群,资源按作业隔离。您可以按需选择不同的资源类型。 “专属资源池”:提供独享的计算资源,不与其他用户共享,更加高效。使用
选择开发应用的预置工作流。 本样例选择“零售商品识别工作流”。 数据处理资源 用于数据处理的资源池和资源类型。 “公共资源池”:提供公共的大规模计算集群,资源按作业隔离。您可以按需选择不同的资源类型。 “专属资源池”:提供独享的计算资源,不与其他用户共享,更加高效。使用专属资源池需要在ModelArts创建专属资源池。
”、“测试资源部署”,即用于数据处理、模型训练和在线测试的资源池和资源类型。 资源池可选“公共资源池”和“专属资源池”。 “公共资源池”:提供公共的大规模计算集群,资源按作业隔离。您可以按需选择不同的资源类型。 “专属资源池”:提供独享的计算资源,不与其他用户共享,更加高效。使用
资源配置 表3 资源配置参数说明 参数 说明 推荐填写 数据处理资源 用于数据处理的资源池和资源类型。 “公共资源池”:提供公共的大规模计算集群,资源按作业隔离。您可以按需选择不同的资源类型。 “专属资源池”:提供独享的计算资源,不与其他用户共享,更加高效。使用专属资源池需要在ModelArts创建专属资源池。
开发应用指通过工作流指引完成自主定制AI应用的开发,使所开发的应用在特定场景下能够解决具体问题。 资源池 用于数据处理、模型训练、服务部署的资源池和资源类型,分为“公共资源池”和“专属资源池”。 “公共资源池”:提供公共的大规模计算集群,资源按作业隔离。 “专属资源池”:提供独享的计算资源,可
后次数清零重新累计。具体计费价格请参见文字识别价格详情,类型选择“自定义模板OCR”。 套餐包 用户可以购买套餐包,扣费时,优先在套餐包内进行抵扣。超出套餐包额度,转回按需计费方式。具体计费价格请参见文字识别价格详情,类型选择“自定义模板OCR”。 自然语言处理套件 计费项 自然
后次数清零重新累计。具体计费价格请参见文字识别价格详情,类型选择“自定义模板OCR”。 套餐包 用户可以购买套餐包,扣费时,优先在套餐包内进行抵扣。超出套餐包额度,转回按需计费方式。具体计费价格请参见文字识别价格详情,类型选择“自定义模板OCR”。 自然语言处理套件 计费项 自然
<filename>bike_1_1593531469339.png</filename> <source> <database>Unknown</database> </source> <size> <width>554</width>
模型训练 模型如何提升效果 检查是否存在训练数据过少的情况,建议每个类别的图片量不少于100个,如果低于这个量级建议扩充。 检查不同标签的样本数是否均衡,建议不同标签的样本数量级相同,并尽量接近,如果有的类别数据量很高,有的类别数据量较低,会影响模型整体的识别效果。 选择适当的学习率和训练轮次。
模型训练 模型如何提升效果 检查是否存在训练数据过少的情况,建议每个类别的图片量不少于100个,如果低于这个量级建议扩充。 检查不同标签的样本数是否均衡,建议不同标签的样本数量级相同,并尽量接近,如果有的类别数据量很高,有的类别数据量较低,会影响模型整体的识别效果。 选择适当的学习率和训练轮次。
模型训练 模型如何提升效果 检查是否存在训练数据过少的情况,建议每个类别的图片量不少于100个,如果低于这个量级建议扩充。 检查不同标签的样本数是否均衡,建议不同标签的样本数量级相同,并尽量接近,如果有的类别数据量很高,有的类别数据量较低,会影响模型整体的识别效果。 选择适当的学习率和训练轮次。
模型训练 模型如何提升效果 检查是否存在训练数据过少的情况,建议每个类别的图片量不少于100个,如果低于这个量级建议扩充。 检查不同标签的样本数是否均衡,建议不同标签的样本数量级相同,并尽量接近,如果有的类别数据量很高,有的类别数据量较低,会影响模型整体的识别效果。 选择适当的学习率和训练轮次。
模型训练 模型如何提升效果 检查是否存在训练数据过少的情况,建议每个类别的图片量不少于100个,如果低于这个量级建议扩充。 检查不同标签的样本数是否均衡,建议不同标签的样本数量级相同,并尽量接近,如果有的类别数据量很高,有的类别数据量较低,会影响模型整体的识别效果。 选择适当的学习率和训练轮次。
模型训练 模型如何提升效果 检查是否存在训练数据过少的情况,建议每个类别的图片量不少于100个,如果低于这个量级建议扩充。 检查不同标签的样本数是否均衡,建议不同标签的样本数量级相同,并尽量接近,如果有的类别数据量很高,有的类别数据量较低,会影响模型整体的识别效果。 选择适当的学习率和训练轮次。
模型如何提升效果 检查是否存在训练数据过少的情况,建议每个类别的图片量不少于100个,如果低于这个量级建议扩充。 检查不同标签的样本数是否均衡,建议不同标签的样本数量级相同,并尽量接近,如果有的类别数据量很高,有的类别数据量较低,会影响模型整体的识别效果。 如果分割效果不好,建
本数不少于100个,如果低于这个量级建议扩充。 检查不同标签的样本数是否均衡,建议不同标签的样本数量级相同,并尽量接近,如果有的类别数据量很高,有的类别数据量较低,会影响模型整体的识别效果。 选择适当的学习率和训练轮次。 通过详细评估中的错误识别示例,有针对性地扩充训练数据。 后续操作
本数不少于100个,如果低于这个量级建议扩充。 检查不同标签的样本数是否均衡,建议不同标签的样本数量级相同,并尽量接近,如果有的类别数据量很高,有的类别数据量较低,会影响模型整体的识别效果。 选择适当的学习率和训练轮次。 通过详细评估中的错误识别示例,有针对性地扩充训练数据。 后续操作
本数不少于100个,如果低于这个量级建议扩充。 检查不同标签的样本数是否均衡,建议不同标签的样本数量级相同,并尽量接近,如果有的类别数据量很高,有的类别数据量较低,会影响模型整体的识别效果。 选择适当的学习率和训练轮次。 通过详细评估中的错误识别示例,有针对性地扩充训练数据。 后续操作
文件放置方式请按照“单品文件夹/单品图”或者“父文件夹/单品文件夹/单品图”的组织方式。 为了保证智能标注效果,建议每个SKU,即每种类别商品的图片大于20张。一次上传文件大小不能超过10M。 后续会把SKU图片保存至OBS,需要提前创建用于存储数据的OBS桶及文件夹,且数据存储的OBS桶与ModelArts