检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
如果因为权限不足导致未同步到IAM用户数据,也可以点击右上方的“导入IAM用户”按钮,手工输入IAM用户数据。 图3 导入IAM用户 您需要在“导入IAM用户”弹框中,填写需要添加的IAM用户ID和IAM用户名,填写完成后单击“确定”,系统将会帮您在GES服务中添加该IAM用户,以便在用户组配置中能够选择该IAM用户。
示。 图1 给用户授权GES权限流程 创建用户组并授权 在IAM控制台创建用户组,并授予GES服务普通用户权限“GES ReadOnlyAccess”。 创建用户并加入用户组 在IAM控制台创建用户,并将其加入1中创建的用户组。 用户登录并验证权限 使用新创建的用户登录控制台,切换至授权区域,验证权限:
用户组配置 您可以创建、管理用户组以及查看用户组是否已关联权限。 具体操作步骤如下: 对用户组进行配置之前,请先了解用户组的概念。 在“用户组配置”页面单击右上角“创建用户组”,进入创建用户组页面。 图1 用户组配置 在创建用户组页面,您可以设置用户组名称和选择组员。 “用户组名
数据库用户名:访问数据源的数据库的用户名(Hive不涉及)。 数据库密码:访问数据源的数据库的用户密码(Hive不涉及)。 是否需要验证:Hive所在MRS集群是否开启Kerberos认证(仅Hive涉及)。 MRS集群用户名称:Hive所在MRS集群的用户名,当Kerberos认证关闭时可不填(仅Hive涉及)。
Sets) 概述 点集共同邻居(Common Neighbors of Vertex Sets)可以得到两个点集合(群体集合)所共有的邻居(即两个群体临域的交集),直观的发现与两个群体共同联系的对象,如发现社交场合中的共同好友、消费领域共同感兴趣的商品、社区群体共同接触过的人,进一
概述 共同邻居算法(Common Neighbors)是一种常用的基本图分析算法,可以得到两个节点所共有的邻居节点,直观地发现社交场合中的共同好友、以及在消费领域共同感兴趣的商品,进一步推测两个节点之间的潜在关系和相近程度。 适用场景 共同邻居算法(Common Neighbors)适用于电商、社交等多领域的推荐场景。
Shortest Paths of Vertex Sets) 概述 点集全最短路算法(Shortest Path of Vertex Sets)用于发现两个点集之间的所有最短路径。 适用场景 点集最短路算法可应用于互联网社交、金融风控、路网交通、物流配送等场景下的区块之间关系的分析。 参数说明
编辑元数据文件完成后,将覆盖之前的元数据文件。为避免数据丢失,建议您在编辑前,先复制一份元数据。 操作步骤 在“元数据管理”页面,编辑元数据有两个入口: 单击对应元数据文件名称,进入元数据详情页,在页面底端单击“编辑”。 在对应元数据文件的“操作”列,单击“编辑”。 图1 编辑入口 在“编辑”页面:
根据输入参数,执行点集共同邻居算法。 点集共同邻居(Common Neighbors of Vertex Sets)可以得到两个点集合(群体集合)所共有的邻居(即两个群体临域的交集),直观的发现与两个群体共同联系的对象, URI POST /ges/v1.0/{project_id}/hyg/{graph_name}/algorithm
关联预测算法(Link Prediction) 概述 关联预测算法(Link Prediction)给定两个节点,根据Jaccard度量方法计算两个节点的相似程度,预测节点之间的紧密关系。 适用场景 关联预测算法(Link Prediction)适用于社交网上的好友推荐、关系预测等场景。
编辑元数据时,会覆盖之前的元数据文件,为避免原始元数据文件丢失,建议您在编辑元数据之前,先复制一份元数据。 操作步骤 在“元数据管理”页面,复制元数据有两个入口: 单击对应元数据文件名称,进入元数据详情页,在页面底端单击“复制”。 在对应的元数据文件的“操作”列,单击“复制”。 定义元数据文件名称以及存储路径。
点集最短路(Shortest Path of Vertex Sets) 概述 点集最短路算法(Shortest Path of Vertex Sets)用于发现两个点集之间的最短路径。 适用场景 点集最短路算法(Shortest Path of Vertex Sets)适用于互联网社交、金融风控、路网
备份图 为确保数据安全,您可以选择将图数据备份,以便后续出现故障或错误时,可以使用备份数据进行恢复操作。 操作步骤 备份操作的入口有两个:“图管理”页面和“备份管理”页面。 “图管理”页面操作如下: 登录图引擎服务管理控制台。在左侧导航栏,选择“图管理”。 在图管理列表中,选择需要备份的图,在“操作”列单击“备份”。
功能介绍 根据输入参数,执行link_prediction算法。 关联预测算法(link_prediction)给定两个节点,根据Jaccard度量方法计算两个节点的相似程度,预测节点之间的紧密关系。 URI POST /ges/v1.0/{project_id}/hyg/{g
在图规格不改变的情况下,提高只读请求的并发数。 暂不支持一万边图的扩副本。 进行扩副本操作后,不支持扩容图操作。如果要对图进行扩容和扩副本两个操作,需要您先进行扩容图操作,再进行扩副本操作。 扩副本的具体操作步骤如下: 登录管理控制台。 对需要扩副本的图,在左侧导航栏中选择“图管理”,单击图管理操作列中的“更多
Propagation)是一种基于图的半监督学习方法,其基本思路是用已标记节点的标签信息去预测未标记节点的标签信息。利用样本间的关系建图,节点包括已标注和未标注数据,其边表示两个节点的相似度,节点的标签按相似度传递给其他节点。标签数据就像是一个源头,可以对无标签数据进行标注,节点的相似度越大,标签越容易传播。 适用场景
Cloud Eye监控集群 本章节定义了图引擎服务上报云监控的监控指标的命名空间,监控指标列表和维度定义,用户可以通过云监控提供的API接口来检索图引擎服务产生的监控指标。 命名空间 SYS.GES 监控指标 表1 图引擎服务监控指标 指标ID 指标名称 含义 取值范围 测量对象
功能介绍 GES数据迁移功能提供了一键式从常见的关系型数据库(MySQL、Oracle、神通MPP)以及大数据组件(DWS、Hive)将数据导入到图实例的能力。用户只需要将原始数据预处理成GES所需要的点边表,就可以通过界面化操作将这些点边表导入到图实例,省去了之前繁琐的生成元数
的组织关系。 点集共同邻居(Common Neighbors of Vertex Sets) 可以得到两个点集合(群体集合)所共有的邻居(即两个群体临域的交集),直观的发现与两个群体共同联系的对象,如发现社交场合中的共同好友、消费领域共同感兴趣的商品、社区群体共同接触过的人,进一
风控等场景。 点集共同邻居(Common Neighbors of Vertex Sets) 可以得到两个点集合(群体集合)所共有的邻居(即两个群体临域的交集),直观的发现与两个群体共同联系的对象,如发现社交场合中的共同好友、消费领域共同感兴趣的商品、社区群体共同接触过的人,进一