检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
1:6379 华为云RDS 否 host信息。 用户认证信息。 云数据库RDS: https://support.huaweicloud.com/rds/index.html - Mysql 否 host信息。 用户认证信息。 Mysql官网: https://www.mysql.com/
install gptcache~=0.1.37 pip install redis-om~=0.1.3 pip install pymysql~=1.1.0 pip install SQLAlchemy~=2.0.19 API手册 API手册请参见SDK API 手册。 父主题:
Asia/Shanghai ; # # sdk.memory.rds.url= # sdk.memory.rds.user= # sdk.memory.rds.password= # sdk.memory.rds.poolSize= ################################
of("inMemory") # Redis redis_cache = Caches.of("redis") # mysql sql_cache = Caches.of("sql") 更新数据:指向缓存中添加或修改数据,需要指定数据的键值对和结果对象。例如,把1+1这个问题和用户cache会话下对应的答案2保存到缓存中,参考示例如下:
Asia/Shanghai ; # # sdk.memory.rds.url= # sdk.memory.rds.user= # sdk.memory.rds.password= # sdk.memory.rds.poolSize= ################################
数据格式:多轮问答场景需要按照指定的数据格式来构造,问题需要拼接上历史所有轮对话的问题和回答。比如,当前是第三轮对话,数据中的问题字段需要包含第一轮的问题、第一轮的回答、第二轮的问题、第二轮的回答以及第三轮的问题,答案字段则为第三轮的回答。以下给出了几条多轮问答的数据样例供您参考: 原始对话示例: A:你是谁? B:您好,我是盘古大模型。
Cache cache = Caches.of(Caches.REDIS); // mysql Cache cache = Caches.of(Caches.SQL); 更新数据:指向缓存中添加或修改数据,需要指定数据的键值对和结果对象。例如,把1+1这个问题和对应的答案2保存到缓存中,可参考以下示例。
登录盘古大模型套件平台。 在左侧导航栏中选择“应用开发 > 工具管理”,单击页面右上角“创建工具”。 图1 工具管理 在“创建工具”页面参考表1完成工具代码的设置。 表1 创建工具参数说明 参数 是否必选 参数类型 描述 tool_id 是 String 工具ID,必须由英文小写字母和_组成,需要符合实际工具含义。
解决: 问题一:JSON字段缺失、JSON字段或值错误。 解决方案:对于这几种情况,需要在微调数据中增大该缺失字段的数据比例,同时也可以在Prompt中加入对该字段的强调。 问题二:JSON格式错误、JSON内容发散。 解决方案:对于这种情况,可以尝试修改推理参数。例如降低“温度
ALLOW_LEADING_DECIMAL_POINT_FOR_NUMBERS 这个字段是jackson-core里面用来标识解析json格式数据是否支持前导小数点的字段,这个报错的意思是找不到这个字段,很可能是因为用户使用的jackson版本太老导致。 建议客户本地将jackson版本升级到和华为云java
保证微调数据中的输入(context字段)不重复,否则会造成模型效果不佳。 保证微调数据内容干净,不包含异常字符。 保证输出(target字段)内容符合业务场景需求。例如,短视频口播场景要求文风可以引起观众兴趣、不丢失产品特点且可以引导观众购买。 微调数据清洗: 下表中列举了本场景常见的数据质量问题以及相应的清洗策略,供您参考:
内存中取出。一般来说,ToolProvider将由用户自定义,后续会有例子说明。 上述例子使用的向量数据库配置指定索引名称,以及使用name和description作为向量化字段,因此工具入库时,会将工具的name和description进行向量化,并在后续的检索中生效。 注意,
}/deployments/{deployment_id}/text/completions 请求消息头 附加请求头字段,如指定的URI和HTTP方法所要求的字段。例如定义消息体类型的请求头“Content-Type”,请求鉴权信息等。 如下公共消息头需要添加到请求中。 Cont
清洗算子功能介绍 数据清洗是提高数据质量的重要环节,包括去除异常的字符、去除表情符号和去除个人敏感内容等,经过清洗的数据可以提升训练阶段的稳定性。 平台支持通过以下清洗能力: 表1 清洗算子说明 算子类型 功能 说明 数据转换 全角转半角 将文本中的所有全角字符转换成半角字符。 中文繁简体互转
创建模型评估数据集 在收集评估数据集时,应确保数据集的独立性和随机性,并使其能够代表现实世界的样本数据,以避免对评估结果产生偏差。对评估数据集进行分析,可以帮助了解模型在不同情境下的表现,从而得到模型的优化方向。 在“数据工程 > 数据管理”中创建“评测”类型的数据集作为评估数据集,数据集创建完成后需要执行发布操作。
出。一般来说,ToolProvider将由用户自定义,将在后续示例中说明。 此外,上述例子使用的向量数据库配置指定索引名称,以及使用name和description作为向量化字段,因此工具入库时,会将工具的name和description进行向量化,并在后续的检索中生效。 注意,
} @AgentTool注解说明: toolId。表示工具的标识,建议为英文且与实际工具含义匹配,在同一个Agent中唯一。 toolDesc。工具的描述,为重要参数,尽可能的准确简短描述工具的用途。 toolPrinciple。表示何时使用该工具,为重要参数。该描述直接影响LLM
3*50=150GB,此时用户可以控制最大的数据量,限制数据量大小,如100GB。 表1 配置比例 配置比例 数据集大小上限500GB 第一阶段 第二阶段 - 数据集 原始大小 默认值 手动修改 实际大小 D1 100GB 1 1 100GB D2 50GB 1 2 50GB D3
当部署一个实例时,占用1个推理单元。 单击“立即创建”,下发模型部署任务。 使用外推扩展模型上下文处理长度 在部署模型、部署后修改模型规格时,可以通过外推功能调整模型的输入输出长度。修改部署时扩缩容和外推场景互斥,每次只能修改一个。 当前仅盘古-NLP-N4系列模型以及基于它们训练的模型支持外推。 图1 模型部署外推升级
束后,检查Agent是否需要终止,如果需要终止,则返回true,默认不终止 * 可以在终止前对agentSession进行修改,如:修改agent的finalAnswer * * @param agentSession AgentSession