检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
创建训练作业中完成的训练作业,勾选“动态加载”。AI引擎的值是系统自动写入的,无需设置。 图5 设置元模型来源 在模型列表页面,当模型状态变为“正常”时,表示模型创建成功。单击模型操作列的“部署”,弹出“版本列表”,单击操作列“部署>在线服务”,将模型部署为在线服务。 图6 部署在线服务 在“部署”页面,
loraplus_lr_ratio: 16.0 修改yaml文件(demo.yaml)的参数如表1所示。 表1 修改重要参数 参数 示例值 参数说明 model_name_or_path /home/ma-user/ws/tokenizers/Qwen2-72B 必须修改。加载tokenizer与Hugging
ormer.git 修改lr_scheduler.py文件,把第27行:t_mul=1. 注释掉。 修改data文件夹下imagenet22k_dataset.py,把第28行:print("ERROR IMG LOADED: ", path) 注释掉。 修改data文件夹下的build
emo.yaml文件内容。 修改yaml文件(demo.yaml)的参数如表1所示 表1 修改重要参数 参数 示例值 参数说明 model_name_or_path /home/ma-user/ws/tokenizers/Qwen2-72B 必须修改。加载tokenizer与Hugging
如需其他配置参数,可参考表1按照实际需求修改。 Step3 启动训练脚本 修改完yaml配置文件后,启动训练脚本。模型不同最少NPU卡数不同,NPU卡数建议值可参考表1。 修改启动脚本demo.sh 进入代码目录{work_dir}/llm_train/LLaMAFactory下修改启动脚本,
loraplus_lr_ratio: 16.0 修改yaml文件(demo.yaml)的参数如表1所示。 表1 修改重要参数 参数 示例值 参数说明 model_name_or_path /home/ma-user/ws/tokenizers/Qwen2-72B 必须修改。加载tokenizer与Hugging
lora_target: all 修改yaml文件(demo.yaml)的参数如表1所示。 表1 修改重要参数 参数 示例值 参数说明 model_name_or_path /home/ma-user/ws/tokenizers/Qwen2-72B 必须修改。加载tokenizer与Hugging
loraplus_lr_ratio: 16.0 修改yaml文件(demo.yaml)的参数如表1所示。 表1 修改重要参数 参数 示例值 参数说明 model_name_or_path /home/ma-user/ws/tokenizers/Qwen2-72B 必须修改。加载tokenizer与Hugging
Terminal日志信息的概览建议。 包含Detail信息及修改示例的HTML信息。 按照建议信息做如下修改: 亲和优化器使能,在train.py中修改优化器为apex混合精度模式下的DDP优化方式(修改点:注释第161和167行,增加第168~170行)。 二进制调优使能,减少算子编译耗时,在train
t/server/api.py 修改def _exit_barrier(self)方法中的barrier_timeout参数,修改后如图1所示。 #修改前 barrier_timeout=self._exit_barrier_timeout #修改后 barrier_timeout=3000
各个模型训练前文件替换 在训练开始前,因模型权重文件可能与训练框架不匹配或有优化,因此需要针对模型的tokenizer文件进行修改或替换,不同模型的tokenizer文件修改内容如下。 falcon-11B模型 在训练开始前,针对falcon-11B模型中的tokenizer文件,需要替换
训练tokenizer文件说明 在训练开始前,有些模型需要对模型的tokenizer文件,或者模型配置配置文件进行修改,具体的修改如下: Qwen-VL 修改文件modeling_qwen.py: # 将36 37 两行注释部分 36 SUPPORT_BF16 = SUPPORT_CUDA #and torch
各个模型训练前文件替换 在训练开始前,因模型权重文件可能与训练框架不匹配或有优化,因此需要针对模型的tokenizer文件进行修改或替换,不同模型的tokenizer文件修改内容如下。 falcon-11B模型 在训练开始前,针对falcon-11B模型中的tokenizer文件,需要替换
训练tokenizer文件说明 在训练开始前,有些模型需要对模型的tokenizer文件,或者模型的配置文件进行修改,具体的修改如下: Qwen-VL 修改文件modeling_qwen.py: # 将36 37 两行注释部分 36 SUPPORT_BF16 = SUPPORT_CUDA #and torch
各个模型训练前文件替换 在训练开始前,因模型权重文件可能与训练框架不匹配或有优化,因此需要针对模型的tokenizer文件进行修改或替换,不同模型的tokenizer文件修改内容如下。 falcon-11B模型 在训练开始前,针对falcon-11B模型中的tokenizer文件,需要替换
各个模型训练前文件替换 在训练开始前,因模型权重文件可能与训练框架不匹配或有优化,因此需要针对模型的tokenizer文件进行修改或替换,不同模型的tokenizer文件修改内容如下。 falcon-11B模型 在训练开始前,针对falcon-11B模型中的tokenizer文件,需要替换
模型生成的代码。请仔细阅读human_eval/execution.py文件第48-57行的注释,内容参考如下。了解执行模型生成代码可能存在的风险,如果接受这些风险,请取消第58行的注释,执行下面步骤6进行评测。 # WARNING # This program exists to
模型生成的代码。请仔细阅读human_eval/execution.py文件第48-57行的注释,内容参考如下。了解执行模型生成代码可能存在的风险,如果接受这些风险,请取消第58行的注释,执行下面步骤6进行评测。 # WARNING # This program exists to
tokenization_chatglm.py 。 271行要添加注释,修改后如图1所示。 图1 修改ChatGLMv3-6B tokenizer文件(1) 291至300行要修改,修改后如图2所示。 图2 修改ChatGLMv3-6B tokenizer文件(2) Qwen系列
tokenization_chatglm.py 。 271行要添加注释,修改后如图1所示。 图1 修改ChatGLMv3-6B tokenizer文件(1) 291至300行要修改,修改后如图2所示。 图2 修改ChatGLMv3-6B tokenizer文件(2) Qwen系列