检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
1:6379 华为云RDS 否 host信息。 用户认证信息。 云数据库RDS: https://support.huaweicloud.com/rds/index.html - Mysql 否 host信息。 用户认证信息。 Mysql官网: https://www.mysql.com/
= Caches.of("inMemory") # Redis redis_cache = Caches.of("redis") # mysql sql_cache = Caches.of("sql") 更新数据:指向缓存中添加或修改数据,需要指定数据的键值对和结果对象。例如,把
加了企业的运营成本,也影响了用户体验。盘古大模型的引入为这一问题提供了有效解决方案。 盘古大模型通过将客户知识数据转换为向量并存储在向量数据库中,利用先进的自然语言处理技术对用户输入的文本进行深度分析和理解。它能够精准识别用户的意图和需求,即使是复杂或模糊的查询,也能提供准确的响
install gptcache~=0.1.37 pip install redis-om~=0.1.3 pip install pymysql~=1.1.0 pip install SQLAlchemy~=2.0.19 API手册 API手册请参见SDK API 手册。 父主题:
of(Caches.IN_MEMORY); // Redis Cache cache = Caches.of(Caches.REDIS); // mysql Cache cache = Caches.of(Caches.SQL); 更新数据:指向缓存中添加或修改数据,需要指定数据的键值对和结
Asia/Shanghai ; # # sdk.memory.rds.url= # sdk.memory.rds.user= # sdk.memory.rds.password= # sdk.memory.rds.poolSize= ################################
History缓存,用于存储历史对话信息,辅助模型理解上下文信息,历史消息对有固定窗口、消息摘要等策略。 初始化:消息记录支持不同的存储方式, 如内存、DCS(Redis)和RDS(Sql)。 from pangukitsappdev.memory.sql_message_history import SQLMessageHistory
Asia/Shanghai ; # # sdk.memory.rds.url= # sdk.memory.rds.user= # sdk.memory.rds.password= # sdk.memory.rds.poolSize= ################################
provider, vector_config) 定义一个ToolRetriever包含2个参数,一个ToolProvider,一个向量数据库配置。其中,ToolProvider的作用为根据工具检索的结果组装工具。 上述例子使用了一个简单的InMemoryToolProvider
"description")) .build()); 定义一个ToolRetriever包含ToolProvider和向量数据库配置2个参数。其中,ToolProvider的作用为根据工具检索的结果组装工具。 上述例子使用了一个简单的InMemoryToolProv
配置知识库 大模型在进行训练时,使用的是通用的数据集,这些数据集没有包含特定行业的数据。通过知识库功能,用户可以将领域知识上传到知识库中,向大模型提问时,大模型将会结合知识库中的内容进行回答,解决特定领域问题回答不准的现象。 登录盘古大模型套件平台。 在左侧导航栏中选择“应用开发
History缓存,用于存储历史对话信息,辅助模型理解上下文信息,历史消息对有固定窗口、消息摘要等策略。 初始化:消息记录支持不同的存储方式,如内存、DCS(Redis)、RDS(Sql)。 import com.huaweicloud.pangu.dev.sdk.api.memory.config.MessageHistoryConfig;
搜索增强 场景介绍 私有化场景下,大模型需要基于现存的私有数据提供服务。通过外挂知识库(Embedding、向量库)方式提供通用的、标准化的文档问答场景。 工程实现 准备知识库。 获取并安装SDK包。 在配置文件(llm.properties)中配置模型信息。 # 盘古模型IAM
搜索增强 场景介绍 私有化场景下,大模型需要基于现存的私有数据提供服务。通过外挂知识库(Embedding、向量库)方式提供通用的、标准化的文档问答场景。 工程实现 准备知识库。 获取并安装SDK包。 在配置文件(llm.properties)中配置模型信息。 # 盘古模型IAM
常见问题 使用java sdk出现第三方库冲突 当出现第三方库冲突的时,如Jackson,okhttp3版本冲突等。可以引入如下bundle包(3.0.40-rc版本后),该包包含所有支持的服务和重定向了SDK依赖的第三方软件,避免和业务自身依赖的库产生冲突: <dependency>
训练智能客服系统大模型需要考虑哪些方面 根据智能客服场景,建议从以下方面考虑: 根据企业实际服务的场景和积累的数据量,评估是否需要构建行业模型,如电商、金融等。 根据每个客户的金牌客服话术,可以对对话模型进行有监督微调,进一步优化其性能。 根据每个客户的实际对话知识,如帮助文档、
Vector Embedding Emebedding模块用于对Emebedding模型API的适配封装,提供统一的接口快速地调用CSS等模型emebedding能力。 初始化:根据相应模型定义Emebedding类,如使用华为CSS Embedding为:Embeddings.of("css");。
查看评估任务详情 查看评估任务详情 登录盘古大模型套件平台。 在左侧导航栏中选择“模型开发 > 模型评估”。 单击任务名称查看模型评估任务详情。包含基本信息、评估详情、评估报告、评估日志以及数据配置。 图1 任务详情界面 任务详情: 任务详情中包含打分模式、评估资源、评估模型、任务状态以及模型描述。
Vector Embedding Embedding模块用于对Embedding模型API的适配封装,提供统一的接口快速地调用CSS模型embedding能力。 初始化:根据相应模型定义Embedding类。例如,使用华为CSS Embedding为:Embeddings.of(Embeddings
打造政务智能问答助手 场景介绍 大模型(LLM)通过对海量公开数据(如互联网和书籍等语料)进行大规模无监督预训练,具备了强大的语言理解、生成、意图识别和逻辑推理能力。这使得大模型在智能问答系统中表现出色:用户输入问题后,大模型依靠其强大的意图理解能力和从大规模预训练语料及通用SF