检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
概述 基于数据胶囊技术,将用户配置属性嵌入到数据加密策略中,只有匹配属性的用户才能打开文件,达到数据出域后仍然主权可控的目的。 进行数据交换的角色分为用数方和供数方,用数方通过发送申请传递数据使用需求;供数方确认使用需求后,创建合约发送到供数方进行签署,一旦合约生效,数据交换作业就可以执行。
连接器”或者“关系型数据库连接器”。 本地连接器:在弹出的界面选择本地连接器(localConnector),选择“结构化”数据类型,再配置创建数据的参数,配置完成后单击“确定”。 关系型数据库连接器:在弹出的界面选择关系型数据库连接器,例如RDS、MYSQL、DWS、HIVE等
使用TICS联邦预测进行新数据离线预测 场景描述 准备数据 发布数据集 创建联邦预测作业 发起联邦预测 父主题: 纵向联邦建模场景
使用TICS可信联邦学习进行联邦建模 场景描述 准备数据 发布数据集 创建可信联邦学习作业 选择数据 样本对齐 筛选特征 模型训练 模型评估 父主题: 纵向联邦建模场景
数据拥有方公司A同意数据需求方公司B的数据使用申请后,可以由公司A创建合约,合约是需要双方同意的数据使用证明。 合约内容包括:合约名称、合约描述、数据信息、公司B的访问需求、访问限制和自定义限制。其中数据信息、公司B的访问需求来自于公司B的数据使用申请,合约名称、合约描述、访问限制和自定义限制由公司A在创建合约时定义。
f2特征的iv值中等,适合作为模型的训练特征。 根据计算得出的iv值,企业A调整了训练使用的特征,没有选用双方提供的特征全集,去掉了部分iv值较低的特征,减少了无用的计算消耗。 父主题: 使用TICS可信联邦学习进行联邦建模
算的,完成训练后企业A也可以使用其他的数据集对同一个模型进行多次的评估。单击“发起评估”选择训练参与方不同的数据集即可发起模型评估。 至此使用可信联邦学习进行联邦建模的过程已经完成,企业A已经训练出了一个符合自己要求的算法模型,后续文档会介绍如何使用已有的算法模型对新的数据进行预测。
选择数据 首先企业A要在“数据选择”页面选择双方发布的数据集,已选择的数据集会出现在右侧,所选的数据集会用于后续的步骤。 父主题: 使用TICS可信联邦学习进行联邦建模
等待训练完成后就可以看到训练出的模型指标。 模型训练完成后如果指标不理想可以重复调整7、8两步的所选特征和超参数,直至训练出满意的模型。 父主题: 使用TICS可信联邦学习进行联邦建模
准备数据 企业A和大数据厂商B需要按照训练模型使用的特征,提供用于预测的数据集,要求预测的数据集特征必须包含训练时使用的特征。 表1 企业A的数据 字段名称 字段类型 描述 id string hash过后的手机号字符串 col0-col4 float 企业A数据特征 industry_predict
某企业A在进行新客户营销时的成本过高,想要通过引入外部数据的方式提高营销的效果,降低营销成本。 因此企业A希望与某大数据厂商B展开一项合作,基于双方共有的数据进行联邦建模,使用训练出的联邦模型对新数据进行联邦预测,筛选出高价值的潜在客户,再针对这些客户进行定向营销,达成提高营销效果、降低营销成本的业务诉求。 基于
创建数据集时,不允许使用哪些名字? 问题描述 创建数据集时,对数据集名字有一定约束。 解决办法 创建数据集时,不允许使用如下名字: <EOF> A ABS ABSENT ABSOLUTE ACTION ADA ADD ADMIN AFTER ALL ALLOCATE ALLOW ALTER
某企业A在进行新客户营销时的成本过高,想要通过引入外部数据的方式提高营销的效果,降低营销成本。 因此企业A希望与某大数据厂商B展开一项合作,基于双方共有的数据进行联邦建模,使用训练出的联邦模型对新数据进行联邦预测,筛选出高价值的潜在客户,再针对这些客户进行定向营销,达成提高营销效果、降低营销成本的业务诉求。 根据
测作业可以作为后续持续预测的依据,企业A可以定期地使用模型预测自己的新业务数据。同时企业A也可以根据新积累的数据训练出新的模型,进一步优化模型预测的精确率,再创建新的联邦预测作业,产出更精准的预测结果供业务使用。 父主题: 使用TICS联邦预测进行新数据离线预测
创建”按钮,进入联邦预测作业的创建页面。企业A需要通过“算法类型”、“训练作业”等筛选条件可以找到用于预测的模型,点选使用的模型后单击“确定”按钮即完成联邦预测作业的创建。 父主题: 使用TICS联邦预测进行新数据离线预测
的输入。企业A需要选择双方的样本对齐字段,并单击“对齐”按钮执行样本对齐。执行完成后会在下方展示对齐后的数据量及对齐结果路径。 父主题: 使用TICS可信联邦学习进行联邦建模
使用TICS多方安全计算进行联合样本分布统计 场景描述 准备数据 发布数据集 创建样本分布统计作业 执行样本分布联合统计 数据优化 父主题: 纵向联邦建模场景
某企业A在进行新客户营销时的成本过高,想要通过引入外部数据的方式提高营销的效果,降低营销成本。 因此企业A希望与某大数据厂商B展开一项合作,基于双方共有的数据进行联邦建模,使用训练出的联邦模型对新数据进行联邦预测,筛选出高价值的潜在客户,再针对这些客户进行定向营销,达成提高营销效果、降低营销成本的业务诉求。 本文
面下方“执行结果”看到sql的运行结果。 也可以通过“作业管理 > 多方安全计算 > 历史作业 > 查看结果”查看对应的结果。 父主题: 使用TICS多方安全计算进行联合样本分布统计
TICS的API可以分为空间API和计算节点API。 使用空间API可以查询TICS空间的相关信息,如获取空间列表、获取计算节点列表等。空间API可通过调用IAM服务“获取用户Token接口”获取Token进行认证鉴权,支持在API Explorer平台在线调试。空间API支持的接口请参见表1。 使用计算节点API可