检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
ModelArts自动学习,为入门级用户提供AI零代码解决方案 支持图片分类、物体检测、预测分析、声音分类场景 自动执行模型开发、训练、调优和推理机器学习的端到端过程 根据最终部署环境和开发者需求的推理速度,自动调优并生成满足要求的模型 ModelArts自动学习,为资深级用户提供模板化开发能力
计费示例 以下案例中出现的费用价格仅供参考,实际价格请参见各服务价格详情。 示例:使用公共资源池。计费项:计算资源费用 + 存储费用 假设用户于2023年4月1日10:00:00创建了一个使用公共资源池的在线服务,规格为CPU: 8 核 32GB、计算节点个数为1个(单价:3.50
计费示例 以下案例中出现的资源规格和费用价格仅供参考,实际价格请参见各服务价格详情。 示例:使用按需计费的专属资源池。计费项:计算资源费用 假设用户于2023年4月1日10:00:00创建了一个按需计费的专属资源池,并在2023年5月1日10:00:00删除此专属资源池。资源池规格为CPU:
/v1/{project_id}/training-jobs 参数说明如表1所示。 表1 参数说明 参数 是否必选 参数类型 说明 project_id 是 String 用户项目ID。获取方法请参见获取项目ID和名称。 请求消息 请求参数如表2所示。 表2 请求参数 参数 是否必选 参数类型 说明 job_name
训练服务器 1.0.11 HCCN Tool接口参考主要介绍集群网络工具hccn_tool对外接口说明,包括配置RoCE网卡的IP、网关,配置网络检测对象IP和查询LLDP信息等。 Atlas 800训练服务器备件查询助手 备件查询助手可以帮助你查询服务器的所有部件、规格描述,数量等详细信息。
ModelArts是面向AI开发者的一站式开发平台,提供海量数据预处理及半自动化标注、大规模分布式训练、自动化模型生成及端-边-云模型按需部署能力,帮助用户快速创建和部署AI应用,管理全周期AI工作流。 ModelArts服务的计费方式简单、灵活,您既可以选择按实际使用时长计费,也可以选择更经
AI Gallery功能介绍 面向开发者提供了AI Gallery大模型开源社区,通过大模型为用户提供服务,普及大模型行业。AI Gallery提供了大量基于昇腾云底座适配的三方开源大模型,同步提供了可以快速体验模型的能力、极致的开发体验,助力开发者快速了解并学习大模型。 构建零
ModelArts是面向AI开发者的一站式开发平台,提供海量数据预处理及半自动化标注、大规模分布式训练、自动化模型生成及模型按需部署能力,帮助用户快速创建和部署AI应用,管理全周期AI工作流。 “一站式”是指AI开发的各个环节,包括数据处理、算法开发、模型训练、创建AI应用、AI应用
团队标注的数据分配机制是什么? 目前不支持用户自定义成员任务分配,数据是平均分配的。 当数量和团队成员人数不成比例,无法平均分配时,则将多余的几张图片,随机分配给团队成员。 如果样本数少于待分配成员时,部分成员会存在未分配到样本的情况。样本只会分配给labeler,比如10000
sole,单击network查看请求列表,请求状态显示为(failed)net::ERR_ADDRESS_IN_USE。 原因分析 可能是用户本地网络的原因,网速不稳定或者网络配置有问题,均可能导致保存失败。 解决方案 1. 切换为稳定的网络后重试。 2. 初始化网络配置,使用管理员权限启动CMD,输入netsh
依然报同样的错,可以提工单申请技术支持 ModelArts.3567:用户只能访问自己账号下的obs目录,ModelArts在读取其他用户obs下的数据时,需要用户委托权限,没有创建委托,就没有权限使用其他用户obs中的数据。 登录ModelArts控制台,管理控制台,在左侧导航
sh时,命令如下: cd /home/ma-user/work/llm_train/AscendSpeed; sh ./scripts/install.sh; sh ./scripts/llama2/0_pl_pretrain_13b.sh 创建训练作业后,会在节点机器中使用基础镜像创建doc
sh时,命令如下: cd /home/ma-user/work/llm_train/AscendSpeed; sh ./scripts/install.sh; sh ./scripts/llama2/0_pl_pretrain_13b.sh 创建训练作业后,会在节点机器中使用基础镜像创建doc
py编写指导请见模型推理代码编写说明)。 确认该cuda版本与您安装的mmcv版本是否匹配。 部署时是否需要使用GPU,取决于的模型需要用到CPU还是GPU,以及推理脚本如何编写。 父主题: 服务部署
sh时,命令如下: cd /home/ma-user/work/llm_train/AscendSpeed; sh ./scripts/install.sh; sh ./scripts/llama2/0_pl_pretrain_13b.sh 创建训练作业后,会在节点机器中使用基础镜像创建doc
”页面。 在选择模型及配置中,单击“增加模型版本进行灰度发布”添加新版本。 图1 灰度发布 您可以设置两个版本的流量占比,服务调用请求根据该比例分配。其他设置可参考参数说明。完成设置后,单击下一步。 确认信息无误后,单击“提交”部署在线服务。 父主题: 在线服务
表1 路径参数 参数 是否必选 参数类型 描述 dataset_id 是 String 数据集ID。 project_id 是 String 用户项目ID。获取方法请参见获取项目ID和名称。 version_id 是 String 数据集版本ID。 请求参数 无 响应参数 状态码: 200
/usr -name *libcudart.so*); 设置环境变量LD_LIBRARY_PATH,设置完成后,重新下发作业即可。 例如so文件的存放路径为:/use/local/cuda/lib64,LD_LIBRARY_PATH设置如下: export LD_LIBRARY_PAT
dataset.create_label_task(task_name="obj_detection_task", task_type=1, description="label task") 参数说明 表1 请求参数 参数 是否必选 参数类型 描述 task_name 是 String 标注任务的名称。
905-20240529154412.zip AIGC场景训练和推理代码包 AscendCloud-LLMFramework-6.3.905-20240611151643.zip 大模型推理框架代码包 AscendCloud-OPP-6.3.905-20240611170314.zip 算子依赖包 支持的特性