检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
--workers:设置数据处理使用执行卡数量 / 启动的工作进程数。 --log-interval:是一个用于设置日志输出间隔的参数,表示输出日志的频率。在训练大规模模型时,可以通过设置这个参数来控制日志的输出。 输出数据预处理结果路径: 训练完成后,以 llama2-13b 为例,输出数据路径为:/home/ma
--workers:设置数据处理使用执行卡数量 / 启动的工作进程数。 --log-interval:是一个用于设置日志输出间隔的参数,表示输出日志的频率。在训练大规模模型时,可以通过设置这个参数来控制日志的输出。 微调数据集预处理参数说明 微调包含SFT和LoRA微调。数据集预处理脚本参数说明如下: --input:原始数据集的存放路径。
和128。 --num-scheduler-steps: 默认为1,推荐设置为8。用于mult-step调度。每次调度生成多个token,可以降低时延。开启multi-step后,在流式返回中,会一次返回num-scheduler-steps个token。开启投机推理后无需配置该参数。
计费码。 unit_num Integer 计费卡数。 表36 flavor_info 参数 参数类型 描述 max_num Integer 可以选择的最大节点数量(max_num,为1代表不支持分布式)。 cpu cpu object cpu规格信息。 gpu gpu object
--workers:设置数据处理使用执行卡数量 / 启动的工作进程数。 --log-interval:是一个用于设置日志输出间隔的参数,表示输出日志的频率。在训练大规模模型时,可以通过设置这个参数来控制日志的输出。 微调数据集预处理参数说明 微调包含SFT和LoRA微调。数据集预处理脚本参数说明如下: --input:原始数据集的存放路径。
4和128。 --num-scheduler-steps:默认为1,推荐设置为8。用于mult-step调度。每次调度生成多个token,可以降低时延。开启multi-step后,在流式返回中,会一次返回num-scheduler-steps个token。开启投机推理后无需配置该参数。
--workers:设置数据处理使用执行卡数量 / 启动的工作进程数。 --log-interval:是一个用于设置日志输出间隔的参数,表示输出日志的频率。在训练大规模模型时,可以通过设置这个参数来控制日志的输出。 输出数据预处理结果路径: 训练完成后,以 llama2-13b 为例,输出数据路径为:/home/ma
--workers:设置数据处理使用执行卡数量 / 启动的工作进程数。 --log-interval:是一个用于设置日志输出间隔的参数,表示输出日志的频率。在训练大规模模型时,可以通过设置这个参数来控制日志的输出。 输出数据预处理结果路径: 训练完成后,以 llama2-13b 为例,输出数据路径为:/home/ma
--workers:设置数据处理使用执行卡数量 / 启动的工作进程数。 --log-interval:是一个用于设置日志输出间隔的参数,表示输出日志的频率。在训练大规模模型时,可以通过设置这个参数来控制日志的输出。 输出数据预处理结果路径: 训练完成后,以 llama2-13b 为例,输出数据路径为:/home/ma
--workers:设置数据处理使用执行卡数量 / 启动的工作进程数。 --log-interval:是一个用于设置日志输出间隔的参数,表示输出日志的频率。在训练大规模模型时,可以通过设置这个参数来控制日志的输出。 输出数据预处理结果路径: 训练完成后,以 llama2-13b 为例,输出数据路径为:/home/ma
16权重输出到${path-to-file}/deepseekV3-bf16,例如:/home/data/deepseekV3-bf16,可以使用以下命令,此处以deepseekV3为例。 python fp8_cast_bf16.py --input-fp8-hf-path $
--workers:设置数据处理使用执行卡数量 / 启动的工作进程数。 --log-interval:是一个用于设置日志输出间隔的参数,表示输出日志的频率。在训练大规模模型时,可以通过设置这个参数来控制日志的输出。 输出数据预处理结果路径: 训练完成后,以 llama2-13b 为例,输出数据路径为:/home/ma
--workers:设置数据处理使用执行卡数量 / 启动的工作进程数。 --log-interval:是一个用于设置日志输出间隔的参数,表示输出日志的频率。在训练大规模模型时,可以通过设置这个参数来控制日志的输出。 输出数据预处理结果路径: 训练完成后,以 llama2-13b 为例,输出数据路径为:/home/ma
<模型下载路径> 方法三:使用专用多线程下载器 hfd:hfd 是本站开发的 huggingface 专用下载工具,基于成熟工具 git+aria2,可以做到稳定下载不断线。 方法四:使用Git clone,官方提供了 git clone repo_url 的方式下载,但是不支持断点续传,并且clone
<模型下载路径> 方法三:使用专用多线程下载器 hfd:hfd 是本站开发的 huggingface 专用下载工具,基于成熟工具 git+aria2,可以做到稳定下载不断线。 方法四:使用Git clone,官方提供了git clone repo_url 的方式下载,但是不支持断点续传,并且clone会下载历史版本占用磁盘空间。
6.3.905版本,请参考获取软件和镜像获取配套版本的软件包和镜像,请严格遵照版本配套关系使用本文档。 训练作业至少需要单机8卡。 确保容器可以访问公网。 本案例仅支持在专属资源池上运行。 Step1 创建专属资源池 本文档中的模型运行环境是ModelArts Standard,用
<模型下载路径> 方法三:使用专用多线程下载器 hfd:hfd 是本站开发的 huggingface 专用下载工具,基于成熟工具 git+aria2,可以做到稳定下载不断线。 方法四:使用Git clone,官方提供了git clone repo_url 的方式下载,但是不支持断点续传,并且clone会下载历史版本占用磁盘空间。
<模型下载路径> 方法三:使用专用多线程下载器 hfd:hfd 是本站开发的 huggingface 专用下载工具,基于成熟工具 git+aria2,可以做到稳定下载不断线。 方法四:使用Git clone,官方提供了git clone repo_url 的方式下载,但是不支持断点续传,并且clone会下载历史版本占用磁盘空间。
6.3.908版本,请参考获取软件和镜像获取配套版本的软件包和镜像,请严格遵照版本配套关系使用本文档。 训练作业使用单机单卡资源。 确保容器可以访问公网。 本案例仅支持在专属资源池上运行。 Step1 创建专属资源池 本文档中的模型运行环境是ModelArts Standard,用
= "**", data_type = DataTypeEnum.IMAGE_CLASSIFICATION) # 数据集对象的占位符形式,可以通过指定data_type限制数据集的数据类型 表11 OBSPlaceholder 属性 描述 是否必填 数据类型 name 名称 是 str