检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
AI开发基本概念 机器学习常见的分类有3种: 监督学习:利用一组已知类别的样本调整分类器的参数,使其达到所要求性能的过程,也称为监督训练或有教师学习。常见的有回归和分类。 非监督学习:在未加标签的数据中,试图找到隐藏的结构。常见的有聚类。 强化学习:智能系统从环境到行为映射的学习,以使奖励信号(强化信号)函数值最大。
MLOps(Machine Learning Operation)是“机器学习”(Machine Learning)和“DevOps”(Development and Operations)的组合实践。机器学习开发流程主要可以定义为四个步骤:项目设计、数据工程、模型构建、部署落地。AI开发
内置属性:图像尺寸(图像的宽度、高度、深度),类型为List[/topic/body/section/table/tgroup/tbody/row/entry/p/br {""}) (br]。列表中的第一个数字为宽度(像素),第二个数字为高度(像素),第三个数字为深度(深度可以没有,默认为3),如[100
4次,然后才会开始正式运行。 warmup即先用一个小的学习率训练几个epoch(warmup),由于网络的参数是随机初始化的,如果一开始就采用较大的学习率会出现数值不稳定的问题,这是使用warm up的原因。等到训练过程基本稳定之后就可以使用原先设定的初始学习率进行训练。 原因分析 Tensorf
参数名称为“data_url”。 描述 输入参数的说明,用户可以自定义描述。 获取方式 输入参数的获取方式,默认使用“超参”,也可以选择“环境变量”。 输入约束 开启后,用户可以根据实际情况限制数据输入来源。输入来源可以选择“数据存储位置”或者“ModelArts数据集”。 如果
创建项目时,如何快速创建OBS桶及文件夹? 在创建项目时需要选择训练数据路径,本章节将指导您如何在选择训练数据路径时,快速创建OBS桶和OBS文件夹。 在创建自动学习项目页面,单击数据集输入位置右侧的“”按钮,进入“数据集输入位置”对话框。 单击“新建对象存储服务(OBS)桶”,进入创建桶页面,具体请参
在物体检测作业中上传已标注图片后,为什么部分图片显示未标注? 请您检查未标注图片的标注文件是否正确。如果标注框文件坐标超过图片,自动学习默认该图片未标注。 父主题: 数据标注
使用从OBS选择的数据创建表格数据集如何处理Schema信息? Schema信息表示表格的列名和对应类型,需要跟导入数据的列数保持一致。 若您的原始表格中已包含表头,需要开启“导入是否包含表头”开关,系统会导入文件的第一行(表头)作为列名,无需再手动修改Schema信息。 若您的
Gallery提供了大量基于昇腾云底座适配的三方开源大模型,同步提供了可以快速体验模型的能力、极致的开发体验,助力开发者快速了解并学习大模型。 构建零门槛线上模型体验,零基础开发者开箱即用,初学者三行代码使用所有模型 通过AI Gallery的AI应用在线模型体验,可以实现模型服务的即时可用性,开发者无需经历
Workflow是开发者基于实际业务场景开发用于部署模型或应用的流水线工具,核心是将完整的机器学习任务拆分为多步骤工作流,每个步骤都是一个可管理的组件,可以单独开发、优化、配置和自动化。Workflow有助于标准化机器学习模型生成流程,使团队能够大规模执行AI任务,并提高模型生成的效率。 ModelArts
训练脚本说明 yaml配置文件参数配置说明 各个模型深度学习训练加速框架的选择 模型NPU卡数取值表 各个模型训练前文件替换 父主题: 主流开源大模型基于DevServer适配LlamaFactory PyTorch NPU训练指导(6.3.907)
物体检测或图像分类项目支持对哪些格式的图片进行标注和训练? 图片格式支持JPG、JPEG、PNG、BMP。 父主题: 准备数据
停止计费 在不需要使用ModelArts服务功能时,需要删除或停止正在计费的项目。自动学习、Workflow、开发环境、模型训练、在线服务、专属资源池涉及到需要停止的计费项如下: 自动学习:停止因运行自动学习作业而创建的训练作业和在线服务。删除存储到OBS中的数据及OBS桶。 Workf
将yaml文件中的per_device_train_batch_size调小,重新训练如未解决则执行下一步。 替换深度学习训练加速的工具或增加zero等级,可参考各个模型深度学习训练加速框架的选择,如原使用Accelerator可替换为Deepspeed-ZeRO-1,Deepspee
SDK和MoXing的区别? ModelArts SDK ModelArts服务提供的SDK,可调用ModelArts功能。您可以下载SDK至本地调用接口,也可以在ModelArts Notebook中直接调用。 ModelArts SDK提供了OBS管理、训练管理、模型管理、服务管
程指导。 场景描述 本案例用于指导用户使用PyTorch1.8实现手写数字图像识别,示例采用的数据集为MNIST官方数据集。 通过学习本案例,您可以了解如何在ModelArts平台上训练作业、部署推理模型并预测的完整流程。 操作流程 开始使用如下样例前,请务必按准备工作指导完成必要操作。
如何查看ModelArts中正在收费的作业? 如何查看ModelArts消费详情? 更多 自动学习 物体检测图片标注,一张图片是否可以添加多个标签? 创建预测分析自动学习项目时,对训练数据有什么要求? 自动学习训练后的模型是否可以下载? 自动学习为什么训练失败? 更多 训练作业 为什么资源充足还是在排队? 训练作业一直在等待中(排队)?
避免在训练过程中数值的上溢或下溢,从而提供更好的稳定性和可靠性,在大模型训练和推理以及权重存储方面更受欢迎。 FP16:用于深度学习训练和推理过程中,可以加速计算并减少内存的占用,对模型准确性的影响在大多数情况下较小。与BF16相比在处理非常大或非常小的数值时遇到困难,导致数值的精度损失。
不用进行强化学习,也可以准确判断和学习到使用者的偏好,最后,DPO算法还可以与其他优化算法相结合,进一步提高深度学习模型的性能。 RM奖励模型(Reward Model):是强化学习过程中一个关键的组成部分。它的主要任务是根据给定的输入和反馈来预测奖励值,从而指导学习算法的方向,帮助强化学习算法更有效地优化策略
理自定义引擎。 TensorFlow Serving是一个灵活、高性能的机器学习模型部署系统,提供模型版本管理、服务回滚等能力。通过配置模型路径、模型端口、模型名称等参数,原生TFServing镜像可以快速启动提供服务,并支持gRPC和HTTP Restful API的访问方式。