检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
深度神经网络设计中的一个重要方面是代价函数的选择。幸运的是,神经网络的代价函数或多或少是和其他的参数模型例如线性模型的代价函数相同的。 在大多数情况下,我们的参数模型定义了一个分布 p(y | x; θ) 并且我们简单地使用最大似然原理。这意味着我们使
为量化器;GG 为解码和生成器;DD 为对抗器。 基于深度学习的视频压缩编码 基于深度学习的视频编码分为两种: • 采用深度学习替代传统视频编码中部分模块 • 端到端采用深度学习编码压缩 部分方案 采样深度神经网络可以替代传统视频编码中的模块包括:帧内/帧间预测、变换、上下采样、环路滤波、熵编码等6。
也就是说,相比于传统机器学习算法需要提供人工定义的特征,深度学习可以自己学习如何提取特征。因此,相比于传统的机器学习算法,深度学习并不依赖复杂且耗时的手动特征工程。 深度学习中的“深度”体现在将数据转换为所需要数据的层数之深。给定模型进行数据输入,可以将描述模型如何得到输出的流
在深度学习领域, 特别是在NLP(深度学习领域研究最热潮激动人心的领域)中,模型的规模正在不断增长。最新的GPT-3模型有1750亿个参数。把它和BERT比较就像把木星比作蚊子一样(好吧,不是字面意思)。深度学习的未来会更大吗? 按理来说,不会,GPT-3是非常有说
aggregating)是通过结合几个模型降低泛化误差的技术(Breiman, 1994)。主要想法是分别训练几个不同的模型,然后让所有模型表决测试样例的输出。这是机器学习中常规策略的一个例子,被称为模型平均(model averaging)。采用这种策略的技术被称为集成方法。模型平均(model avera
当计算图变得极深时,神经网络优化算法会面临的另外一个难题就是长期依赖问题——由于变深的结构使模型丧失了学习到先前信息的能力,让优化变得极其困难。深层的计算图不仅存在于前馈网络,还存在于之后介绍的循环网络中(在第十章中描述)。因为循环网络要在很长时间序列的各个时刻重复应用相同操作来
因变量的常见数据类型有三种:定量数据、二分类定性数据和多分类定性数据。输出层激活函数的选择主要取决于因变量的数据类型。MNIST数据集是机器学习文献中常用的数据。因变量(0~9)用独热码表示,比如数字8的独热码为(0 0 0 0 0 0 0 0 1 0)数字2的读热码为(0 0 1
深度学习简介 一、神经网络简介 深度学习(Deep Learning)(也称为深度结构学习【Deep Structured Learning】、层次学习【Hierarchical Learning】或者是深度机器学习【Deep Machine Learning】)是一类算法集合,是机器学习的一个分支。
实战项目 深度学习是一门实践性很强的学科,需要通过实战项目来加深对理论知识的理解和应用。可以选择一些开源的深度学习项目进行学习和实践,如ImageNet、CIFAR-10等。 2.比赛竞赛 参加深度学习相关的比赛竞赛,可以锻炼自己的深度学习能力和实战经验,也可以与其他深度学习爱好者交
Sigmoid 函数的图像看起来像一个 S 形曲线。
特征选择 f. 重新定义问题2. 从算法上提升性能 a. 算法的筛选 b. 从文献中学习 c. 重采样的方法3. 从算法调优上提升性能 a. 模型可诊断性 b. 权重的初始化 c. 学习率 d. 激活函数 e. 网络结构 f. batch和epoch g. 正则项 h. 优化目标
)领域。显然,“深度学习”是与机器学习中的“神经网络”是强相关,“神经网络”也是其主要的算法和手段;或者我们可以将“深度学习”称之为“改良版的神经网络”算法。深度学习又分为卷积神经网络(Convolutional neural networks,简称CNN)和深度置信网(Deep
深度学习是机器学习的一种,而机器学习是实现人工智能的必经路径。深度学习的概念源于人工神经网络的研究,含多个隐藏层的多层感知器就是一种深度学习结构。深度学习通过组合低层特征形成更加抽象的高层表示属性类别或特征,以发现数据的分布式特征表示。研究深度学习的动机在于建立模拟人脑进行分析学
从整个机器学习的任务划分上来看,机器学习可以分为有监督学习、无监督学习和半监督学习及强化学习。图像、文本等深度学习的应用都属于有监督学习范畴。自编码器和生成式对抗网络可以算在无监督深度学习范畴内。最后就剩下强化学习了。强化学习发展到现在,早已结合了神经网络迸发出新的活力,强化学习结合深度学习已经形成了深度强化学习(Deep
进行文档处理的深度生成模型。6.3 深度信念网络深度信念网络 (Deep Belief Networks, DBN) 是具有多个潜在二元或真实变量层的生成模型。Ranzato 等人 (2011) 利用深度信念网络 (deep Belief Network, DBN) 建立了深度生成模型进行图像识别。6
系列内容深度学习CNN 文章目录 ADAS摄像头成像需具备的两大特点单目镜头的测距原理双目镜头的测距原理 ADAS摄像头成像需具备的两大特点 是要看得足够远 看的越远就能有更加充裕的时间做出判断和反应,从而 避免或者降低事故发生造成的损失。 是要求高动态
欠拟合,就增大模型;如果过拟合,就添加数据或者调整。 参数VS超参数学习模型中一般有两种参数,一种参数是可以从学习中得到,还有一种无法靠数据里面得到,只能靠人的经验来设定,这类参数就叫做超参数。比如算法中的学习率、梯度下降法循环的数量、隐藏层数目、隐藏层单元数目、激活函数的选择都
深度学习 1. 深度学习介绍 2. 深度学习原理 3. 深度学习实现 深度学习 1. 深度学习介绍 深度学习(Deep learning)是机器学习的一个分支领域,其源于人工 神经网络的研究。 深度学习广泛应用在计算机视觉,音频处理,自然语言处理等诸多领 域。 人工神经网络(Artificial
O(m2)。当数据集是几十亿个样本时,这个计算量是不能接受的。在学术界,深度学习从 2006 年开始收到关注的原因是,在数以万计样本的中等规模数据集上,深度学习在新样本上比当时很多热门算法泛化得更好。不久后,深度学习在工业界受到了更多的关注,因为其提供了一种可扩展的方式训练大数据集上的非线性模型。