检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
文生视频模型训练推理 CogVideoX1.5 5b模型基于Lite Server适配PyTorch NPU全量训练指导(6.3.912) CogVideoX模型基于Lite Server适配PyTorch NPU全量训练指导(6.3.911) Open-Sora1.2基于Lite
人工标注视频数据 由于模型训练过程需要大量有标签的视频数据,因此在模型训练之前需对没有标签的视频添加标签。通过ModelArts您可对视频添加标签,快速完成对视频的标注操作,也可以对已标注视频修改或删除标签进行重新标注。 视频标注仅针对视频帧进行标注。 开始标注 登录ModelA
AI开发流程 科普视频 02:33 AI开发流程科普视频 特性讲解 昇腾云服务 产品介绍 03:55 了解什么是昇腾云服务 华为云ModelArts服务视频 训练作业容错检查功能介绍 04:48 了解什么是训练作业容错检查功能 华为云ModelArts服务视频 高可用冗余节点功能介绍
mp4 ├── 2.mp4 ├── ... 每个 txt 与视频同名,为视频的标签。视频与标签应该一一对应。通常情况下,不使用一个视频对应多个标签。 如果为风格微调,请准备至少50条风格相似的视频和标签,以利于拟合。 修改CogVideo/sat/configs/cogvideox_*
数据集管理 查询数据集列表 创建数据集 查询数据集详情 更新数据集 删除数据集 父主题: 数据管理
Session鉴权 (可选)Session鉴权 用户名密码认证模式 用户AK-SK认证模式
CogVideo是一个94亿参数的Transformer模型,用于文本到视频生成。通过继承一个预训练的文本到图像模型CogView2,还提出了多帧速率分层训练策略,以更好地对齐文本和视频剪辑。作为一个开源的大规模预训练文本到视频模型,CogVideo性能优于所有公开可用的模型,在机器和人类评估方面都有很大的优势。
服务管理 服务管理概述 在开发环境中部署本地服务进行调试 部署在线服务 查询服务详情 推理服务测试 查询服务列表 查询服务对象列表 更新服务配置 查询服务监控信息 查询服务日志 删除服务
数据管理 数据集管理 数据集版本管理 样本管理 导入任务管理 导出任务管理 Manifest管理 标注任务管理
导入任务管理 查询导入任务列表 创建导入任务 查询导入任务状态 父主题: 数据管理
训练管理 训练作业 资源和引擎规格接口
X为按顺序自动生成的数字),具体位置打印在日志中。 Step9 推理 对于大尺寸、长时间的视频强制需要多卡推理,具体要求见下图,绿色允许只用单卡推理,蓝色至少双卡推理。 图5 推理视频要求 单卡推理 python inference.py configs/opensora-v1-2/inference/sample
Server资源,并确保机器已开通,密码已获取,能通过SSH登录,不同机器之间网络互通。 购买Lite Server资源时如果无可选资源规格,需要联系华为云技术支持申请开通。 当容器需要提供服务给多个用户,或者多个用户共享使用该容器时,应限制容器访问Openstack的管理地址(169.254
合作伙伴 注册伙伴 发布解决方案 父主题: AI Gallery(旧版)
Server资源,并确保机器已开通,密码已获取,能通过SSH登录,不同机器之间网络互通。 购买Lite Server资源时如果无可选资源规格,需要联系华为云技术支持申请开通。 当容器需要提供服务给多个用户,或者多个用户共享使用该容器时,应限制容器访问Openstack的管理地址(169.254
Gallery CLI配置工具指南 安装Gallery CLI配置工具 使用Gallery CLI配置工具下载文件 使用Gallery CLI配置工具上传文件 父主题: AI Gallery(新版)
Lite Cluster资源配置 Lite Cluster资源配置流程 配置Lite Cluster网络 配置kubectl工具 配置Lite Cluster存储 (可选)配置驱动 (可选)配置镜像预热
通过人工标注方式标注数据 创建ModelArts人工标注作业 人工标注图片数据 人工标注文本数据 人工标注音频数据 人工标注视频数据 管理标注数据 父主题: 标注ModelArts数据集中的数据
构建模型 自定义模型规范 自定义镜像规范 使用AI Gallery SDK构建自定义模型 父主题: 发布和管理AI Gallery模型
Lite Cluster资源使用 在Lite Cluster资源池上使用Snt9B完成分布式训练任务 在Lite Cluster资源池上使用ranktable路由规划完成Pytorch NPU分布式训练 在Lite Cluster资源池上使用Snt9B完成推理任务