内容选择
全部
内容选择
内容分类
  • 学堂
  • 博客
  • 论坛
  • 开发服务
  • 开发工具
  • 直播
  • 视频
  • 用户
时间
  • 一周
  • 一个月
  • 三个月
  • 分享深度学习笔记组件学习

    组件学习组件学习不仅使用一个模型的知识,还使用多个模型的知识。人们相信,通过独特的信息组合或输入(包括静态和动态),深度学习可以比单一模式更深入地理解和表现。迁移学习是组件学习的一个非常明显的例子。基于这一思想,对类似问题预先训练的模型权重可用于对特定问题进行微调。为了区分不同类

    作者: 初学者7000
    628
    1
  • 机器学习深度学习区别

    深度学习由经典机器学习发展而来,两者有着相同与不同特点1.完全不同的模式机器学习:使计算机能从数据中学习,并利用其学到的知识来提供答案(通常为预测)。依赖于不同的范式(paradigms),例如统计分析、寻找数据相似性、使用逻辑等深度学习:使用单一技术,最小化人脑劳动。使用被称为

    作者: 极客潇
    1358
    4
  • 深度学习之多任务学习

    地泛化。展示了多任务学习中非常普遍的一种形式,其中不同的监督任务(给定 x预测 y(i))共享相同的输入 x 以及一些中间层表示 h(share),能学习共同的因素池。该模型通常可以分为两类相关的参数:多任务学习深度学习框架中可以以多种方式进行,该图说明了任务共享相同输入但涉及

    作者: 小强鼓掌
    532
    1
  • 深度学习之流形学习

    字“8” 形状的流形在大多数位置只有一维,但在中心的相交处有两维。      如果我们希望机器学习算法学习 Rn 上的所有感兴趣的函数,那么很多机器学习问题看上去都是不可解的。流形学习 (manifold learning) 算法通过一个假设来克服这个障碍,该假设认为 Rn 中大

    作者: 小强鼓掌
    1676
    3
  • 深度残差收缩网络:(三)网络结构

    5W)×1,即不仅宽度减小为原先的一半,而且通道数增加了一倍。(2)深度残差收缩网络的网络结构在该论文中,提出了两种深度残差收缩网络(Deep Residual Shrinkage Networks,简称DRSN)。第一种是“通道之间共享阈值的深度残差收缩网络(Deep Residual Shrinkage

    作者: hw9826
    发表时间: 2020-01-14 21:03:13
    4108
    0
  • 《MXNet深度学习实战》—1.1.3 深度学习

    复杂多变。深度学习中的深度主要就是来描述神经网络中层的数量,目前神经网络可以达到成百上千层,整个网络的参数量从万到亿不等,所以深度学习并不是非常深奥的概念,其本质上就是神经网络。神经网络并不是最近几年才有的概念,早在20世纪中期就已经有人提出了神经网络,那么既然深度学习是基于神经

    作者: 华章计算机
    发表时间: 2019-06-16 16:21:27
    3404
    0
  • 深度学习之流形学习

    字“8” 形状的流形在大多数位置只有一维,但在中心的相交处有两维。      如果我们希望机器学习算法学习 Rn 上的所有感兴趣的函数,那么很多机器学习问题看上去都是不可解的。流形学习 (manifold learning) 算法通过一个假设来克服这个障碍,该假设认为 Rn 中大

    作者: 小强鼓掌
    1053
    2
  • 深度学习之流形学习

    例如,数字 “8’’ 形状的流形在大多数位置只有一维,但在中心的相交处有两维。如果我们希望机器学习算法学习 Rn 上的所有感兴趣的函数,那么很多机器学习问题看上去都是不可解的。流形学习 (manifold learning) 算法通过一个假设来克服这个障碍,该假设认为 Rn 中大

    作者: 小强鼓掌
    811
    1
  • 深度学习发展的学习范式——成分学习

    成分学习    成分学习不仅使用一个模型的知识,而且使用多个模型的知识。人们相信,通过独特的信息组合或投入(包括静态和动态的),深度学习可以比单一的模型在理解和性能上不断深入。    迁移学习是一个非常明显的成分学习的例子, 基于这样的一个想法, 在相似问题上预训练的模型权重可以

    作者: 初学者7000
    716
    5
  • 深度学习初体验

    通过对课程的学习,从对EI的初体验到对深度学习的基本理解,收获了很多,做出如下总结:深度学习是用于建立、模拟人脑进行分析学习的神经网络,并模仿人脑的机制来解释数据的一种机器学习技术。它的基本特点是试图模仿大脑的神经元之间传递,处理信息的模式。最显著的应用是计算机视觉和自然语言处理

    作者: ad123445
    8089
    33
  • 机器学习(八):深度学习简介

    深度学习简介 一、神经网络简介 深度学习(Deep Learning)(也称为深度结构学习【Deep Structured Learning】、层次学习【Hierarchical Learning】或者是深度机器学习【Deep Machine Learning】)是一类算法集合,是机器学习的一个分支。

    作者: Lansonli
    发表时间: 2023-02-18 06:02:17
    62
    0
  • 深度学习在环保

    Anthony 如是说:" 这一领域的开发获得了高速发展。深度学习模型在规模上不断扩大,越来越先进, 目前呈指数级增长。令大多数人意想不到的是:这意味着能源消耗正在随之增加。" 一次深度学习训练 =126 个丹麦家庭的年度能源消耗 深度学习训练是数学模型识别大型数据集中的模式的过程。这是一

    作者: 初学者7000
    839
    2
  • 分享深度学习笔记

    深度学习领域,特别是在NLP(最令人兴奋的深度学习研究领域)中,该模型的规模正在扩大。最新的gpt-3模型有1750亿个参数。把它比作伯特就像把木星比作蚊子一样(好吧,不是字面意思)。深度学习的未来会更大吗?通常情况下,gpt-3是非常有说服力的,但它在过去一再表明,“成功的科

    作者: 初学者7000
    636
    1
  • 学习笔记-如何提升深度学习性能?

    重新定义问题2. 从算法上提升性能   a. 算法的筛选 b. 从文献中学习 c. 重采样的方法3. 从算法调优上提升性能   a. 模型可诊断性 b. 权重的初始化 c. 学习率 d. 激活函数 e. 网络结构 f. batch和epoch g. 正则项 h. 优化目标 i. 提早结束训练4

    作者: RabbitCloud
    632
    1
  • 深度学习修炼(六)——神经网络分类问题

    如果把偏差——方差看成一个色谱,那么与之相反的一端的是深度神经网络。神经网络并不局限与单独查看每个特征,而是学习特征之间的交互。例如:神经网络可能推断“尼日利亚”和“西联汇款”一起出现在电子邮件中表示垃圾邮件,但单独出现则不表示垃圾邮件。 即使我们有比特征多得多的样本,深度神经网络也有可能过拟合。 6

    作者: ArimaMisaki
    发表时间: 2022-08-09 15:48:10
    263
    0
  • 深度学习的挑战

    深度学习挑战 虽然深度学习具有令人印象深刻的能力,但是一些障碍正在阻碍其广泛采用。它们包括以下内容: •技能短缺:当O'Reilly公司的调查询问是什么阻碍人们采用深度学习时,受访者的第一个反应就是缺乏熟练的员工。2018年全球人工智能人才报告表明,“全世界大约有22,000名获

    作者: 建赟
    1653
    2
  • 什么是深度学习深度学习与Mindspore实践》今天你读书了吗?

    深度学习是支持人工智能发展的核心技术,云服务则是深度学生的主要业务之一。深度学习的模型有很多,目前开发者最常用的深度学习模型与架构包括卷积神经网络 (CNN)、深度置信网络 (DBN)、受限玻尔兹曼机 (RBM)、递归神经网络 (RNN & LSTM & GRU)、递归张量神经网络

    作者: QGS
    946
    0
  • 部署深度学习模型

    虽然modelarts能够帮助我们在线上完成深度学习的模型,但是训练好的深度学习模型是怎么部署的

    作者: 初学者7000
    876
    3
  • 深度学习之过拟合

    化算法是基于梯度下降的,但是很多有用的损失函数,如 0 − 1 损失,没有有效的导数(导数要么为零,要么处处未定义)。这两个问题说明,在深度学习中我们很少使用经验风险最小化。反之,我们会使用一个稍有不同的方法,我们真正优化的目标会更加不同于我们希望优化的目标。

    作者: 小强鼓掌
    335
    1
  • 深度学习深陷困境!

    年多伦多举行的一场人工智能会议上,深度学习“教父” Geoffrey Hinton 曾说过,“如果你是一名放射科医生,那么你的处境就像一只已身在悬崖边缘却毫不自知的郊狼。”他认为,深度学习非常适合读取核磁共振(MRIs)和 CT 扫描图像,因此我们应该“停止培训放射科医生”,而且在五年内,深度学习会有更大的进步。然而,时间快进到

    作者: 星恒
    250
    3