检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
EdgeFabric)通过纳管您的边缘节点,提供将云上应用延伸到边缘的能力,联动边缘和云端的数据,满足客户对边缘计算资源的远程管控、数据处理、分析决策、智能化的诉求。同时,在云端提供统一的设备/应用监控、日志采集等运维能力,为企业提供完整的边缘和云协同的一体化服务的边缘计算解决方案。 前提条件
从上面两张表可以看出: (1)训练轮数对于联邦学习模型的性能影响不大,这主要是由于乳腺癌数据集的分类相对简单,且数据集经过了扩充导致的; (2)增大每个参与方本地模型训练的迭代次数,可以显著提升最终联邦学习模型的性能。 参与方数据量不同时,独立训练对比横向联邦训练的准确率 本节实验不再将训练集均匀划
评估型横向联邦作业流程 基于横向联邦作业的训练结果,可以进一步评估横向联邦模型,将训练好的模型用于预测。 选择对应训练型作业的“历史作业”按钮,获取最新作业的模型结果文件路径。 图1 查看模型结果文件的保存位置 前往工作节点上步骤1展示的路径,下载模型文件。由于Logistic
采用纵向联邦。xx医院的应用场景为不同主体的相同特征建模,因此选用横向联邦。 创建训练型横向联邦学习作业。 图1 创建训练型横向联邦学习作业 配置作业的执行脚本,训练模型文件。 执行脚本是每个参与方的计算节点在本地会执行的模型训练、评估程序,用于基于本地的数据集训练子模型。 训练
创建并运行隐私求交作业 企业A单击“作业管理 > 隐私求交 > 创建”,依次填写作业名称、选择需要求交的数据集和对应的求交列、选择算法协议及各种参数,再单击“保存并执行”即可发起一次隐私求交查询。 父主题: 隐私求交黑名单共享场景
若您希望空间启用区块链服务(BCS)来审计任务信息,请打开此选项。 使用前需要按照启用区块链审计服务(可选)章节的描述完成准备工作。 BCS服务实例 - 选择BCS空间链。 通道 - 选择邀空间链邀请租户时选择的通道。 组织 - 选择链代码部署的组织。 区块链签名证书 - 上传签名证书文件(选择按照启用区块链审计服
在对话框中填写对应的名称和主机的IP地址。 图2 填写信息 单击左侧的新建会话,输入登录的用户名,以root为例。 图3 输入用户名 输入ECS云服务对应的密码,进入对应的服务器。 图4 输入密码 登录成功。 图5 登录成功 方式二:ECS服务控制台 在ECS的服务控制台上,通过IP搜索对应的弹性云服务器。
内存(GIB):用户填写容器使用的内存配额,范围为4~999的正整数。为了达到计算资源最佳使用效率,建议内存配额控制在43G以内。 计算节点密钥(.p12):请从通知管理下载的空间配置的压缩包中,提取计算节点密钥(.p12格式) 并导入上传。 CA证书(.jks):请从通知管理下载的空间配置的压缩包中,提取CA证书(
XGBoost 学习率 控制权重更新的幅度,以及训练的速度和精度。取值范围为0~1的小数。 树数量 定义XGBoost算法中决策树的数量,一个样本的预测值是多棵树预测值的加权和。取值范围为1~50的整数。 树深度 定义每棵决策树的深度,根节点为第一层。取值范围为1~10的整数。 切分点数量 定
计算节点管理 部署计算节点 管理计算节点 管理实例 管理任务 管理文件 管理数据 审计日志 对接AOM日志服务 管理密钥
数据预处理是训练机器学习模型的一个重要前置步骤,其主要是通过转换函数将特征数据转换成更加适合算法模型的特征数据过程。TICS特征预处理功能能够实现对数据的探索、分析、规整以及转换,以达到数据在训练模型中可使用、可实用,在TICS平台内完成数据处理到建模的闭环。 假设您有如下数据集(
的路径映射到服务容器内的本地路径,“主机存储”方式是指将计算节点所在机器的本地路径映射到服务容器内的本地路径。 主机路径 挂载使用的容器外部的路径,用于服务容器内和外部数据交互。用户只有在工作路径中放置数据集等文件,服务才能读取到;服务运行作业生成的结果、日志文件也会输出到工作目录,供用户查看、获取。
作为整个作业的数据集,必须选择一个当前代理的数据集,另一个数据集可以来自空间中的任意一方。两方的数据集中一方数据集只含有特征,另一方的数据集必须含有标签。 重试:开关开启后,执行失败的作业会根据配置定时进行重试,仅对开启后的执行作业生效。开关关闭后,关闭前已触发重试的作业不受影响,仅对关闭后的执行作业生效。
约束与限制 使用TICS前,您需要认真阅读并了解以下使用限制。 浏览器限制 您需要使用支持的浏览器版本登录TICS。 表1 浏览器兼容性 浏览器 建议版本 Google Chrome 120,119,118
S服务、授权IAM用户使用TICS、准备数据、启用区块链审计服务(可选)等一系列操作后,可以根据自身的业务需求使用TICS提供的常用实践。 表1 常用最佳实践 实践 描述 基于TICS实现端到端的企业积分查询作业 本最佳实践提供了通过统一制定隐私规则,使用TICS进行安全计算,避免真实数据被窃取的使用案例。
原因是SQL语句中存在使用隐患字段的情况。 请根据具体提示,涉及以下情形请检查并修改SQL语句: 情形一:直接查询其他参与方的唯一标识、度量数据。 情形二:试图使用唯一标识做条件过滤操作。 情形三:使用直接可以逆推度量数据的简单计算式。 情形四:将标识分组后的度量数据聚合值直接明文呈现。
常用概念 合作方、参与方: 空间成员,有权使用空间中的数据,或者将自有数据发布到空间,供其他合作方受限使用。 计算节点 部署在参与方侧,是可信智能计算与合作方侧数据的桥梁,保障数据按照合作方意愿受限使用。 计算节点是管理参与方数据的最小单位。部署计算节点时需要指定空间配置信息。在
步骤1:准备工作 如果您是第一次使用TICS,请参考准备工作,完成注册账号并实名认证、配置CCE服务、购买TICS服务、授权IAM用户使用TICS、准备数据、启用区块链审计服务(可选)等一系列准备工作。 本入门示例,是为了演示TICS使用的全流程。组织方在组建空间时,需要至少添加1位合作方。
在“联邦预测”页面,选择批量预测的Tab页,单击创建。 图1 创建作业 在弹出的对话框中编辑“作业名称”,选择“算法类型”。 选择“算法类型”之后,配置是否开启作业重试:开关开启后,执行失败的作业会根据配置定时进行重试,仅对开启后的执行作业生效。开关关闭后,关闭前已触发重试的作业不受影响,仅对关闭后的执行作业生效。
用户需要计算节点短暂脱离空间,一段时间内不想被其他参与方使用自己的数据时,可以手动触发计算节点下线。即“计算节点状态”为“在线”时,触发单击下线,计算节点会切换成离线状态,180秒后空间其他参与方无法使用该计算节点已发布的数据集运行作业。 用户想要加入空间,想被其他参与方使用自己的数据时,可以手动触发计算节点