检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
节点的可用资源如何查询? 查询节点的可用资源 云平台提供的云监控,可以对节点运行状态进行日常监控。您可以通过管理控制台,直观地查看节点的各项监控指标。 由于监控数据的获取与传输会花费一定时间,因此,云监控显示的是当前时间5~10分钟前的节点状态。如果您的节点刚创建完成,请等待5~10分钟后查看监控数据。具体请参见节点监控。
模型评估 训练时的评估指标是用训练的数据集中随机采样的记录计算的,完成训练后企业A也可以使用其他的数据集对同一个模型进行多次的评估。单击“发起评估”选择训练参与方不同的数据集即可发起模型评估。 至此使用可信联邦学习进行联邦建模的过程已经完成,企业A已经训练出了一个符合自己要求的算
企业A在完成特征选择后,可以单击右下角的“启动训练”按钮,配置训练的超参数并开始训练。 等待训练完成后就可以看到训练出的模型指标。 模型训练完成后如果指标不理想可以重复调整7、8两步的所选特征和超参数,直至训练出满意的模型。 父主题: 使用TICS可信联邦学习进行联邦建模
模型训练页面展示了历史作业的执行情况、模型的评估指标和生成时间。模型的评估指标是使用训练数据集产生的。 单击“查看参数”可以查看该模型训练时指定的机器学习作业参数;逻辑回归作业可以单击“查看中间结果”实时查看每一次迭代的评估指标。 图12 模型训练参数 进行模型评估。在历史作业
该线性模型的系数加上偏置项。 图2 查看模型结果文件 本地利用测试集评估模型。可以采用如下脚本,会打印出模型在测试集上的准确率和AUC两个指标。 图3 本地评估模型的Python脚本 父主题: 测试步骤
参与方信息,最大长度128 is_single_predict Boolean 单方还是双方预测 metrics String 联邦学习模型评估指标 请求示例 查询训练作业下的成功模型 get https://x.x.x.x:12345/v1/{project_id}/leagues/
参与方信息,最大长度128 is_single_predict Boolean 单方还是双方预测 metrics String 联邦学习模型评估指标 请求示例 查询作业的历史实例列表 get https://x.x.x.x:12345/v1/{project_id}/leagues/{
发生。金融机构与政府部门,如税务部门、市场监管部门、水电公司等在保护各方原始数据隐私的前提下,通过多方联合建模,金融机构补充了风控模型特征维度,提升模型准确率。 优势: 提升模型准确率 多方机构实现算法层面联合建模,提升了需求方模型的预测效果。 数据隐私保护强 多方采用隐私集合求
不同可用区之间物理隔离,但内网互通,既保障了可用区的独立性,又提供了低价、低时延的网络连接。 区域(Region):从地理位置和网络时延维度划分,同一个Region内共享弹性计算、块存储、对象存储、VPC网络、弹性公网IP、镜像等公共服务。Region分为通用Region和专属
discrete_embedding_size 否 Integer 离散特征embedding的维度,最小值4 multihot_embedding_size 否 Integer multihot特征embedding的维度,最小值4 mlp_dims 否 Array of integers 多层感知机每层的节点数
discrete_embedding_size 否 Integer 离散特征embedding的维度,最小值4 multihot_embedding_size 否 Integer multihot特征embedding的维度,最小值4 mlp_dims 否 Array of integers 多层感知机每层的节点数
作业是否可被授权执行是指作业是否可被授权给空间内其他节点执行,被授权节点可以直接执行作业并获取作业结果,无编辑、查看、删除、初始化等权限。 然后选择数据集及其对应的查询字段和返回字段。当前支持最多选择3个数据集,同时返回字段支持配置默认值,针对相同的返回字段支持配置优先级。 图2 选择数据文件 单击“保存并提交审批”。
TRANSACTIONS_COMMITTED TRANSACTIONS_ROLLED_BACK TRANSFORM TRANSFORMS TRANSLATE TRANSLATE_REGEX TRANSLATION TREAT TRIGGER TRIGGER_CATALOG TRIGGER_NAME TRIGGER_SCHEMA
discrete_embedding_size 否 Integer 离散特征embedding的维度,最小值4 multihot_embedding_size 否 Integer multihot特征embedding的维度,最小值4 mlp_dims 否 Array of integers 多层感知机每层的节点数
当计算节点执行横向联邦训练型作业时,若执行脚本中包含恶意行为,包含但不限于非授权访问其他作业数据、篡改文件和配置、恶意消耗容器资源等场景时,会影响到数据提供方的计算环境安全以及其他学习作业的正常执行。 针对该问题,在边缘节点部署场景中,TICS通过构建Python安全沙箱来单独运行横向联邦作业,做到作业运行的安全隔离。
特征集表示分组内所选MULTIHOT特征集合,每个MULTIHOT特征有且只能属于一个分组。字典数表示分组内所有MULTIHOT特征取值总维度,非必填字段,但必须保证全填或全不填该字段。 创建非结构化数据集 创建数据集前需存在已创建好的连接器,参考创建连接器。 用户登录TICS控制台。
037553105503320694 编写训练脚本(作业发起方) 作业发起方还需要编写联邦学习训练脚本,其中需要用户自行实现读取数据、训练模型、评估模型、获取评估指标的逻辑。计算节点会将数据集配置文件中的path属性作为参数传递给训练脚本。 JobParam属性如下: class JobParam:
查看预处理执行结果 保存预处理作业。经过一系列数据探索和分析,当数据集达到目标需求后,单击页面下方的“保存并执行”按键即可将所选取的预处理方法及其参数进行保存。然后页面跳转到作业列表,此处可以查看预处理作业的任务状态和作业状态。 图7 查看预处理作业 发布预处理后的训练数据集。在预处