检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
如果已完成数据集预处理,则直接执行预训练任务。如果未进行数据集预处理,则会自动执行 scripts/llama2/1_preprocess_data.sh 。 预训练数据集预处理参数说明 预训练数据集预处理脚本 scripts/llama2/1_preprocess_data.sh 中的具体参数如下:
如果已完成数据集预处理,则直接执行预训练任务。若未进行数据集预处理,则会自动执行 scripts/llama2/1_preprocess_data.sh 。 预训练数据集预处理参数说明 预训练数据集预处理脚本 scripts/llama2/1_preprocess_data.sh 中的具体参数如下:
--benchmark-csv benchmark_parallel.csv 参数说明 --host:服务部署的IP,${docker_ip}替换为宿主机实 际的IP地址。 --port:推理服务端口。 --tokenizer:tokenizer路径,HuggingFace的权重路径。
--benchmark-csv benchmark_parallel.csv 参数说明 --host:服务部署的IP,${docker_ip}替换为宿主机实 际的IP地址。 --port:推理服务端口。 --tokenizer:tokenizer路径,HuggingFace的权重路径。
--benchmark-csv benchmark_parallel.csv 参数说明 --host:服务部署的IP,${docker_ip}替换为宿主机实 际的IP地址。 --port:推理服务端口。 --tokenizer:tokenizer路径,HuggingFace的权重路径。
安装和配置OBS命令行工具 (可选)工作空间配置 模型训练 本地构建镜像及调试 上传镜像 上传数据和算法到OBS 使用Notebook进行代码调试 创建单机单卡训练作业 监控资源 本地构建镜像及调试 本节通过打包conda env来构建环境,也可以通过pip install、conda
# 推理工具 修改代码 将AscendSpeed代码包AscendCloud-LLM-xxx.zip在本地解压缩后。在上传代码前,需要对解压后的训练脚本代码进行修改。具体文件为:llm_train/AscendSpeed/scripts/obs_pipeline.sh,具体修改代码内容以及位置,如下所示。
参见表3。 本章节介绍如何使用AWQ量化工具实现推理量化。 量化方法:per-group Step1 模型量化 可以在Huggingface开源社区获取AWQ量化后的模型权重;或者获取FP16/BF16的模型权重之后,通过autoAWQ工具进行量化。 方式一:从开源社区下载发布的AWQ量化模型。
# 推理工具 修改代码 将AscendSpeed代码包AscendCloud-LLM-xxx.zip在本地解压缩后。在上传代码前,需要对解压后的训练脚本代码进行修改。具体文件为:llm_train/AscendSpeed/scripts/obs_pipeline.sh,具体修改代码内容以及位置,如下所示。
cannot find the file specified: 'c:\python39\Scripts\ephemeral-port-reserve.exe' -> 'c:\python39\Scripts\ephemeral-port-reserve.exe.deleteme ”。 原因分析
Code、PyCharm、SSH工具。PyCharm和VS Code还分别有专门的插件PyCharm Toolkit、VS Code Toolkit,让远程连接操作更便捷。具体参见通过PyCharm远程使用Notebook实例、通过VS Code远程使用Notebook实例、通过SSH工具远程使用Notebook。
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE kubernetes ClusterIP 10.96.0.1 <none> 443/TCP
MA-Advisor性能调优建议工具使用指导 MA-Advisor是一款迁移性能问题自动诊断工具,其集成了昇腾自动诊断工具msprof-analyze,并在ModelArts Standard的Jupyter lab平台进行了插件化,能快速分析和诊断昇腾场景下PyTorch性能劣化问题并给出相关调优建议。
本章节介绍如何使用SmoothQuant量化工具实现推理量化。 SmoothQuant量化工具使用到的脚本存放在代码包AscendCloud-LLM-x.x.x.zip的llm_tools目录下。 代码目录如下: AutoSmoothQuant #量化工具 ├── asc
本章节介绍如何使用SmoothQuant量化工具实现推理量化。 SmoothQuant量化工具使用到的脚本存放在代码包AscendCloud-LLM-x.x.x.zip的llm_tools目录下。 代码目录如下: AutoSmoothQuant #量化工具 ├── asc
本章节介绍如何使用SmoothQuant量化工具实现推理量化。 SmoothQuant量化工具使用到的脚本存放在代码包AscendCloud-LLM-x.x.x.zip的llm_tools目录下。 代码目录如下: AutoSmoothQuant #量化工具 ├── asc
#在benchmark_eval目录下 pip install -e . #下载对应依赖 cd ../human-eval #在benchmark_eval目录下 (可选,如果选择使用humaneval数据集) pip install -e . # 可选,如果选择使用humaneval数据集 pip install
# 推理代码包 |──llm_tools # 推理工具 下载代码之后需要修改llm_train/AscendSpeed/scripts/install.sh文件。具体为删除install.sh的第43行 "git cherrypick
本章节介绍如何使用SmoothQuant量化工具实现推理量化。 SmoothQuant量化工具使用到的脚本存放在代码包AscendCloud-LLM-x.x.x.zip的llm_tools目录下。 代码目录如下: AutoSmoothQuant #量化工具 ├── asc
本章节介绍如何使用SmoothQuant量化工具实现推理量化。 SmoothQuant量化工具使用到的脚本存放在代码包AscendCloud-LLM-x.x.x.zip的llm_tools目录下。 代码目录如下: AutoSmoothQuant #量化工具 ├── asc