检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
语言模型推理性能测试 benchmark方法介绍 性能benchmark包括两部分。 静态性能测试:评估在固定输入、固定输出和固定并发下,模型的吞吐与首token延迟。该方式实现简单,能比较清楚的看出模型的性能和输入输出长度、以及并发的关系。 动态性能测试:评估在请求并发在一定范
SDK不支持在训练作业和在线服务中使用。 ModelArts SDK已经集成在ModelArts开发环境Notebook中,可以直接使用,无需进行Session鉴权。 登录ModelArts控制台,在“开发环境 > Notebook”中创建Notebook实例,在Terminal或ipynb文件中直接调用ModelArts
推理精度测试 本章节介绍如何进行推理精度测试。 前提条件 确保容器可以访问公网。 Step1 配置精度测试环境 获取精度测试代码。精度测试代码存放在代码包AscendCloud-3rdLLM-xxx.zip的llm_tools/llm_evaluation(6.3.905版本)目
推理精度测试 本章节介绍如何进行推理精度测试,数据集是ceval_gen、mmlu_gen、math_gen、gsm8k_gen、humaneval_gen。 前提条件 确保容器可以访问公网。 Step1 配置精度测试环境 获取精度测试代码。精度测试代码存放在代码包AscendC
推理精度测试 本章节介绍如何使用lm-eval工具开展语言模型的推理精度测试,数据集包含mmlu、ARC_Challenge、GSM_8k、Hellaswag、Winogrande、TruthfulQA等。 约束限制 确保容器可以访问公网。 当前的精度测试仅适用于语言模型精度验证
在云监控平台查看在线服务性能指标 ModelArts支持的监控指标 为使用户更好地掌握自己的ModelArts在线服务和对应模型负载的运行状态,云服务平台提供了云监控。您可以使用该服务监控您的ModelArts在线服务和对应模型负载,执行自动实时监控、告警和通知操作,帮助您更好地了解服务和模型的各项性能指标。
推理性能测试 benchmark方法介绍 性能benchmark包括两部分。 静态性能测试:评估在固定输入、固定输出和固定并发下,模型的吞吐与首token延迟。该方式实现简单,能比较清楚的看出模型的性能和输入输出长度、以及并发的关系。 动态性能测试:评估在请求并发在一定范围内波动
用。 计算资源 套餐包 套餐包仅用于公共资源池,不能用于专属资源池。 配额限制 查看每个配额项目支持的默认配额,请参考怎样查看我的配额?,登录控制台查询您的配额详情。 表2 配额 资源类型 默认配额限制 是否支持调整 说明 Standard Notebook 一个账号最多创建10个Notebook。
如果当前资源配额限制无法满足使用需要,您可以申请扩大配额。 怎样查看配额 如需查看每个配额项目支持的默认配额,请参考怎样查看我的配额?章节,登录控制台查询您的配额详情。 申请扩大配额 如需扩大资源配额,请在华为云管理控制台申请扩大配额。 配额项说明 使用ModelArts Lite
SD WebUI推理性能测试 以下性能测试数据仅供参考。 开启Flash Attention 生成1280x1280图片,使用Ascend: 1* ascend-snt9b(64GB),约耗时7.5秒。 图1 生成图片耗时(1) 生成1280x1280图片,使用Ascend: 1*
AI开发基本流程介绍 什么是AI开发 AI(人工智能)是通过机器来模拟人类认识能力的一种科技能力。AI最核心的能力就是根据给定的输入做出判断或预测。 AI开发的目的是什么 AI开发的目的是将隐藏在一大批数据背后的信息集中处理并进行提炼,从而总结得到研究对象的内在规律。 对数据进行
免费体验MaaS预置服务 ModelArts Studio大模型即服务平台给新用户分配了每个模型100万Tokens的免费调用额度,无需部署即可一键体验通义千问、ChatGLM、DeepSeek等预置模型服务。 登录ModelArts管理控制台。 在左侧导航栏中,选择“ModelArts
在模型广场查看模型 在模型广场页面,ModelArts Studio大模型即服务平台提供了丰富的开源大模型,在模型详情页可以查看模型的详细介绍,根据这些信息选择合适的模型进行训练、推理,接入到企业解决方案中。 访问模型广场 登录ModelArts管理控制台。 在左侧导航栏中,选择“ModelArts
多模态模型推理性能测试 benchmark方法介绍 静态性能测试:评估在固定输入、固定输出和固定并发下,模型的吞吐与首token延迟。该方式实现简单,能比较清楚的看出模型的性能和输入输出长度、以及并发的关系。 性能benchmark验证使用到的脚本存放在代码包AscendCloud-LLM-xxx
语言模型推理性能测试 benchmark方法介绍 性能benchmark包括两部分。 静态性能测试:评估在固定输入、固定输出和固定并发下,模型的吞吐与首token延迟。该方式实现简单,能比较清楚的看出模型的性能和输入输出长度、以及并发的关系。 动态性能测试:评估在请求并发在一定范
多模态模型推理性能测试 benchmark方法介绍 静态性能测试:评估在固定输入、固定输出和固定并发下,模型的吞吐与首token延迟。该方式实现简单,能比较清楚的看出模型的性能和输入输出长度、以及并发的关系。 性能benchmark验证使用到的脚本存放在代码包AscendCloud-LLM-xxx
多模态模型推理性能测试 benchmark方法介绍 静态性能测试:评估在固定输入、固定输出和固定并发下,模型的吞吐与首token延迟。该方式实现简单,能比较清楚的看出模型的性能和输入输出长度、以及并发的关系。 性能benchmark验证使用到的脚本存放在代码包AscendCloud-LLM-xxx
推理性能测试 benchmark方法介绍 性能benchmark包括两部分。 静态性能测试:评估在固定输入、固定输出和固定并发下,模型的吞吐与首token延迟。该方式实现简单,能比较清楚的看出模型的性能和输入输出长度、以及并发的关系。 动态性能测试:评估在请求并发在一定范围内波动
推理性能测试 benchmark方法介绍 性能benchmark包括两部分。 静态性能测试:评估在固定输入、固定输出和固定并发下,模型的吞吐与首token延迟。该方式实现简单,能比较清楚的看出模型的性能和输入输出长度、以及并发的关系。 动态性能测试:评估在请求并发在一定范围内波动
推理性能测试 benchmark方法介绍 性能benchmark包括两部分。 静态性能测试:评估在固定输入、固定输出和固定并发下,模型的吞吐与首token延迟。该方式实现简单,能比较清楚的看出模型的性能和输入输出长度、以及并发的关系。 动态性能测试:评估在请求并发在一定范围内波动