检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
reduce计算,但用来测试性能不太合适。因此,会出现两节点实际带宽100,但测试出速度110,甚至130GB/s的情况。加这个参数以后,2节点和2节点以上情况的速度才会稳定一些。 测试时需要执行mpirun的节点到hostfile中的节点间有免密登录,设置SSH免密登录方法如下: 客户端生成公私钥。
做量化处理。 全量和增量节点的local rank table必须一一对应。 全量和增量节点不能使用同一个端口。 scheduler实例中NODE_PORTS=8088,8089;端口设置顺序必须与global rank table文件中各全量和增量节点顺序一致,否则会报错。 Step9
做量化处理。 全量和增量节点的local rank table必须一一对应。 全量和增量节点不能使用同一个端口。 scheduler实例中NODE_PORTS=8088,8089;端口设置顺序必须与global rank table文件中各全量和增量节点顺序一致,否则会报错。 步骤九
alpaca_gpt4_data.json # 微调数据文件 注意:多机情况下,只有在rank_0节点进行数据预处理,转换权重等工作,所以原始数据集和原始权重,包括保存结果路径,都应该在共享目录下。 父主题: 准备工作
做量化处理。 全量和增量节点的local rank table必须一一对应。 全量和增量节点不能使用同一个端口。 scheduler实例中NODE_PORTS=8088,8089;端口设置顺序必须与global rank table文件中各全量和增量节点顺序一致,否则会报错。 步骤九
S/ECS节点进行生命周期的管理。 IMS ims:images:get ims:images:share 使用ModelArts Lite Cluster资源池时必须配置。 ModelArts Lite Cluster专属资源池节点创建在用户账号下,创建前需要将节点系统镜像共享给用户账号。
/scripts/install.sh; sh ./scripts/llama2/0_pl_lora_13b.sh 选择用户自己的专属资源池,以及规格与节点数。防止训练过程中出现内存溢出的情况,用户可参考表2进行配置。 图2 选择资源池规格 新增SFS Turbo挂载配置,并选择用户创建的SFS
npu-smi info # 在每个实例节点上运行此命令可以看到NPU卡状态 npu-smi info -l | grep Total # 在每个实例节点上运行此命令可以看到总卡数 如出现错误,可能是机器上的NPU设备没有正常安装,或者
npu-smi info # 在每个实例节点上运行此命令可以看到NPU卡状态 npu-smi info -l | grep Total # 在每个实例节点上运行此命令可以看到总卡数 如出现错误,可能是机器上的NPU设备没有正常安装,或者
hyperinstance 超节点亲和调度 affinity_group_size Integer 亲和组大小,affinity_type为hyperinstance时必填,系统会将affinity_group_size个task调度到一个超节点内组成亲和组。 用户向超节点资源池投递训练作业,
= 购买数量 * 购买时长。 在实际使用过程中,会对时长产生扣除;扣除时长 = 所有任务消耗时长的总和,每个任务消耗的时长 = 单任务节点个数 * 任务运行时间。 套餐包余量预警 为避免产生按需消费,建议通过设置套餐包剩余量预警,以确保在套餐包用尽前及时接收预警。设置套餐包剩余量预警步骤如下:
/scripts/install.sh; sh ./scripts/llama2/0_pl_sft_13b.sh 选择用户自己的专属资源池,以及规格与节点数。防止训练过程中出现内存溢出的情况,用户可参考表2进行配置。 图2 选择资源池规格 新增SFS Turbo挂载配置,并选择用户创建的SFS
npu-smi info # 在每个实例节点上运行此命令可以看到NPU卡状态 npu-smi info -l | grep Total # 在每个实例节点上运行此命令可以看到总卡数 如出现错误,可能是机器上的NPU设备没有正常安装,或者
执行成功后,日志信息如图1所示。 图1 1个计算节点GPU规格worker-0运行日志信息 计算节点个数选择为2,训练作业也可以运行。日志信息如图2和图3所示。 图2 2个计算节点worker-0运行日志信息 图3 2个计算节点worker-1运行日志信息 父主题: 制作自定义镜像用于训练模型
/scripts/install.sh; sh ./scripts/llama2/0_pl_pretrain_13b.sh 选择用户自己的专属资源池,以及规格与节点数。防止训练过程中出现内存溢出的情况,用户可参考表2进行配置。 图2 选择资源池规格 新增SFS Turbo挂载配置,并选择用户创建的SFS
npu-smi info # 在每个实例节点上运行此命令可以看到NPU卡状态 npu-smi info -l | grep Total # 在每个实例节点上运行此命令可以看到总卡数 如出现错误,可能是机器上的NPU设备没有正常安装,或者
/scripts/install.sh; sh ./scripts/llama2/0_pl_sft_13b.sh 选择用户自己的专属资源池,以及规格与节点数。防止训练过程中出现内存溢出的情况,用户可参考表2进行配置。 图2 选择资源池规格 新增SFS Turbo挂载配置,并选择用户创建的SFS
/scripts/install.sh; sh ./scripts/llama2/0_pl_lora_13b.sh 选择用户自己的专属资源池,以及规格与节点数。防止训练过程中出现内存溢出的情况,用户可参考表2进行配置。 图2 选择资源池规格 新增SFS Turbo挂载配置,并选择用户创建的SFS
String 资源规格GPU的类型。 spec_code String 云资源的规格类型。 max_num Integer 可以选择的最大节点数量。 unit_num Integer 计价单元个数。 storage String 资源规格的ssd大小。 interface_type
dule_utils.py 问题4:Error waiting on exit barrier错误 错误截图: 报错原因:多线程退出各个节点间超时时间默认为300s,时间设置过短。 解决措施: 修改容器内torch/distributed/elastic/agent/server/api