检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
Wav2Lip基于DevServer适配PyTorch NPU推理指导(6.3.906) Wav2Lip是一种基于对抗生成网络的由语音驱动的人脸说话视频生成模型。主要应用于数字人场景。不仅可以基于静态图像来输出与目标语音匹配的唇形同步视频,还可以直接将动态的视频进行唇形转换,输出与输入语音匹配的视频,俗称“
训练后的模型可用于推理部署,应用于大模型对话场景。 Open-Clip基于DevServer适配PyTorch NPU训练指导 Open-Clip模型训练 介绍Open-Clip模型基于ModelArts DevServer的训练过程,训练使用PyTorch框架和昇腾NPU计算资源。 应用于AIGC和多模态视频编码器。
预置镜像:ModelArts提供的镜像,可以在创建Notebook/训练作业/AI应用时,直接选择ModelArts提供的镜像。 ModelArts提供的预置镜像分为两种: 统一镜像:适用创建Notebook/训练作业/AI应用,后续新上线的镜像都为统一镜像。对应章节ModelArts统一镜像列表。
如果不再使用ModelArts,如何停止收费? 训练作业如何收费? 为什么项目删除完了,仍然还在计费? 欠费后,ModelArts的资源是否会被删除? 部署后的AI应用是如何收费的? Notebook中的EVS存储可以使用套餐包吗?
POST http://${docker_ip}:8080/v1/chat/completions \ -H "Content-Type: application/json" \ -d '{ "model": "${container_model_path}", "messages":
POST http://${docker_ip}:8080/v1/chat/completions \ -H "Content-Type: application/json" \ -d '{ "model": "${container_model_path}", "messages":
隔离的可用区,这些可用区通过延迟低、吞吐量高且冗余性高的网络连接在一起。利用可用区,您可以设计和操作在可用区之间无中断地自动实现故障转移的应用程序和数据库。与传统的单个或多个数据中心基础设施相比,可用区具有更高的可用性、容错性和可扩展性。 ModelArts通过对DB的数据进行备
通过对ModelArts数据集能力进行封装,实现数据集的数据导入功能。数据集导入节点主要用于将指定路径下的数据导入到数据集或者标注任务中,主要应用场景如下: 适用于数据不断迭代的场景,可以将一些新增的原始数据或者已标注数据导入到标注任务中,并通过后续的数据集标注节点进行标注。 对于一
导入模型时,模型配置文件中的安装包依赖参数如何编写? 使用自定义镜像创建在线服务,如何修改默认端口 ModelArts平台是否支持多模型导入 导入AI应用对于镜像大小的限制 父主题: 模型管理
助力开发者快速了解并学习大模型。 构建零门槛线上模型体验,零基础开发者开箱即用,初学者三行代码使用所有模型 通过AI Gallery的AI应用在线模型体验,可以实现模型服务的即时可用性,开发者无需经历繁琐的环境配置步骤,即可直观感受模型效果,快速尝鲜大模型,真正达到“即时接入,即时体验”的效果。
扣费,如何停止计费? 训练作业如何收费? 为什么项目删除完了,仍然还在计费? 欠费后,ModelArts的资源是否会被删除? 部署后的AI应用是如何收费的? Notebook中的EVS存储可以使用套餐包吗? 如何查看在哪个区域购买的套餐包? 已购买的套餐包为什么不能使用? 套餐包续费后为什么没有扣减?
发布和管理AI Gallery数据集 发布和管理AI Gallery项目 发布和管理AI Gallery镜像 发布和管理AI Gallery中的AI应用 使用AI Gallery微调大师训练模型 使用AI Gallery在线推理服务部署模型 Gallery CLI配置工具指南 计算规格说明
以保证可用区的独立性。是否将资源放在同一可用区内,主要取决于您对容灾能力和网络时延的要求。 如果您的应用需要较高的容灾能力,建议您将资源部署在同一区域的不同可用区内。 如果您的应用要求实例之间的网络延时较低,则建议您将资源创建在同一可用区内。 若您使用了CloudPond云服务,
在线服务 部署在线服务时,自定义预测脚本python依赖包出现冲突,导致运行出错 在线服务预测时,如何提高预测速度? 调整模型后,部署新版本AI应用能否保持原API接口不变? 在线服务的API接口组成规则是什么? 在线服务运行中但是预测失败时,如何排查报错是不是模型原因导致的 在线服务
原因分析 该报错是因为发送预测请求后,服务出现停止后又启动的情况。 处理方法 需要您检查服务使用的镜像,确定服务停止的原因,修复问题。重新创建AI应用部署服务。 父主题: 服务部署
需要您把CV2包制作为自定义镜像,上传至容器镜像服务(SWR),选择从容器镜像中导入元模型,部署在线服务。如何制作自定义镜像请参考从0-1制作自定义镜像并创建AI应用。 父主题: 服务部署
数据扩增通过简单的数据扩增例如缩放、裁剪、变换、合成等操作直接或间接的方式增加数据量。 数据生成应用相关深度学习模型,通过对原数据集进行学习,训练生成新的数据集的方式增加数据量。 数据域迁移应用相关深度学习模型,通过对原域和目标域数据集进行学习,训练生成原域向目标域迁移的数据。 父主题:
如何选择可用区? 是否将资源放在同一可用区内,主要取决于您对容灾能力和网络时延的要求。 如果您的应用需要较高的容灾能力,建议您将资源部署在同一区域的不同可用区内。 如果您的应用要求实例之间的网络延时较低,则建议您将资源创建在同一可用区内。 区域和终端节点 当您通过API使用资
--configFile=config.ini 注意:推理应用开发时,需要使用模型的Resize功能,改变输入的shape。而且Resize操作需要在数据从host端复制到device端之前执行,下面是一个简单的示例,展示如何在推理应用时使用动态Shape。 import mindspore_lite
中,单击AI应用名称,进入AI应用详情页。 在“基本信息”中,复制AI应用的ID。 图3 获取AI应用ID 根据查询到的资源名称拼接账单中上报的资源名称。 拼接规则:在线服务名称-AI应用的ID 假设在线服务名称为service_predictor_name,AI应用的ID为b9