检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
模型,并且一键部署至设备。 HiLens安全帽检测技能 功能介绍 面向智慧园区的安全帽检测技能,支持自主上传图片数据,构建高精度安全帽检测模型,快速开发安全帽检测技能,实现园区自动检测工人未戴安全帽的行为。 适用场景 智慧园区。 优势 模型精度高,检测速度快,更新模型简便。 端云
当前HiLens套件提供HiLens安全帽检测技能,支持自主上传图片数据,构建高精度安全帽检测模型,快速开发安全帽检测技能,实现园区自动检测工人未戴安全帽的行为。 功能介绍 面向智慧园区的安全帽检测技能,支持自主上传图片数据,构建高精度安全帽检测模型,快速开发安全帽检测技能,实现园区自动检测工人未戴安全帽的行为。
“详细评估”左侧显示标注标签,右侧显示第二相交并比指标较低的图片。 图2 详细评估 模拟在线测试 在“模型评估”页面,您可以在线测试当前模型,即通过上传测试图片,查看当前模型的预测结果。 待服务构建完成,单击“上传图片”,上传本地一张测试图片,即可查看当前模型版本的预测结果。 图3 模拟在线测试
部署服务 评估模型后,就可以部署服务,开发检测热轧钢板表面缺陷的专属应用,此应用用于识别热轧钢板表面图片中的缺陷类型,也可以直接调用对应的API和SDK识别。 前提条件 已在视觉套件控制台选择“热轧钢板表面缺陷检测工作流”新建应用,并评估模型,详情请见评估模型。 由于部署服务涉及
作列的“编辑”。 图2 模板列表 进入“应用开发”页面,您可以依次修改“上传模板图片”、“定义预处理”、“框选参照字段”、“框选识别区”、“评估”步骤的信息,重新部署模板。操作指引如下: 上传模板图片 定义预处理 框选参照字段 框选识别区 评估应用 部署服务 父主题: 通用单模板工作流
编辑”。 图2 编辑模板 进入“应用开发”页面,您可以依次修改“上传模板图片”、“定义预处理”、“框选参照字段”、“框选识别区”、“训练分类器”、“评估”步骤的信息,重新部署模板。操作指引如下: 上传模板图片 定义预处理 框选参照字段 框选识别区 训练分类器 评估应用 部署服务 父主题:
Pro>视觉套件”控制台选择“我的工作流>零售商品识别工作流”新建应用,详细操作请见新建应用。您可以在零售场景下开发商品识别模型,自主上传数据训练模型,实现商品识别功能,提高商品新品上线效率,提升消费者体验。 图1 商品识别工作流流程 表1 商品识别工作流说明 流程 说明 详细指导 准备数据
息。 图1 应用基本信息 在线测试应用 在“应用监控”页面,您可以针对“运行中”的应用使用在线测试功能,在“上传测试图片”右侧单击“选择文件”,上传本地的测试图片,下侧会显示预测结果。 查看历史版本 在“应用监控”页面,您可以查看当前应用所部署的不同版本信息,包括“更新时间”、“
通用单模板工作流 工作流介绍 上传模板图片 定义预处理 框选参照字段 框选识别区 评估应用 部署服务 自定义字段类型 编辑应用 删除应用 父主题: 文字识别套件
多模板分类工作流 工作流介绍 上传模板图片 定义预处理 框选参照字段 框选识别区 训练分类器 评估应用 部署服务 编辑应用 自定义字段类型 删除应用 父主题: 文字识别套件
在文件中找到“aksk_request”,修改内容有两处: (1)填写获取的AK、SK。 (2)将代码示例中的请求url替换为自定义OCR部署后生成的url,只使用图片中用蓝色标注的字段进行替换。 (3)将代码示例中的# option["side"]="front"替换为: option["template_id"]="xxx"
检查是否存在训练数据过少的情况,建议每个类别的图片量不少于100个,如果低于这个量级建议扩充。 检查不同标签的样本数是否均衡,建议不同标签的样本数量级相同,并尽量接近,如果有的类别数据量很高,有的类别数据量较低,会影响模型整体的识别效果。 如果分割效果不好,建议检测图片标注,标注质量的好坏直接影响模型训练图像分割效果的好坏。
查看训练详情 模型训练完成后,可在“模型训练”页面查看“训练详情”,包括“交并比变化情况”和“损失变化”。 图1 模型训练 模型如何提升效果 检查图片标注是否准确,第二相区域标注工作量较大,建议基于自动标注的结果进一步优化标注精度。 可根据损失函数选择适当的训练轮次。 通过详细评估中的错误识别示例,有针对性地扩充训练数据。
模型训练完成后,可在“模型训练”页面查看“训练详情”,包括“准确率变化情况”和“误差变化”。 图1 模型训练 模型如何提升效果 检查是否存在训练数据过少的情况,建议每个类别的图片量不少于100个,如果低于这个量级建议扩充。 检查不同标签的样本数是否均衡,建议不同标签的样本数量级相同,并尽量接近,如果有的类别数据量很
文字识别套件提供单模板开发的工作流,通过工作流指引构建文字识别模板,识别单个板式图片中的文字,实现自定义结构化信息识别。 已发布北京四区域 通用单模板工作流 OBS 2.0支持多模板分类工作流 文字识别套件提供多模板分类器开发的工作流,通过工作流指引同时制作多张模板,实现多版式模板并存场景下的结构化信息识别。 已发布北京四区域
模型训练完成后,可在“模型训练”页面查看“训练详情”,包括“准确率变化情况”和“误差变化”。 图1 模型训练 模型如何提升效果 检查是否存在训练数据过少的情况,建议每个类别的图片量不少于100个,如果低于这个量级建议扩充。 检查不同标签的样本数是否均衡,建议不同标签的样本数量级相同,并尽量接近,如果有的类别数据量很
模型训练完成后,可在“模型训练”页面查看“训练详情”,包括“准确率变化情况”和“误差变化”。 图1 模型训练 模型如何提升效果 检查是否存在训练数据过少的情况,建议每个类别的图片量不少于100个,如果低于这个量级建议扩充。 检查不同标签的样本数是否均衡,建议不同标签的样本数量级相同,并尽量接近,如果有的类别数据量很
模型训练完成后,可在“模型训练”页面查看“训练详情”,包括“准确率变化情况”和“误差变化”。 图2 模型训练 模型如何提升效果 检查是否存在训练数据过少的情况,建议每个类别的图片量不少于100个,如果低于这个量级建议扩充。 检查不同标签的样本数是否均衡,建议不同标签的样本数量级相同,并尽量接近,如果有的类别数据量很
模型训练完成后,可在“模型训练”页面查看“训练详情”,包括“准确率变化情况”和“误差变化”。 图1 模型训练 模型如何提升效果 检查是否存在训练数据过少的情况,建议每个类别的图片量不少于100个,如果低于这个量级建议扩充。 检查不同标签的样本数是否均衡,建议不同标签的样本数量级相同,并尽量接近,如果有的类别数据量很
由于该工作流所需数据集需标注10%数据量用于测试,其余90%无需标注。针对已上传的数据集,您可以手动添加或修改标签。 单击数据集操作列的“标注测试图片”,进入数据集概览页单击右上角的“开始标注”,在“数据标注”页面手动标注数据。 导入数据集 在“数据选择”页面,单击“导入数据集”。 弹出“导入数据集”对话框。