检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
模型)来获取目标场景的数据,以此扩充您的数据集。为了能获取更高质量的数据,可以通过CoT(思维链)、self-instruct等方式批量调用大模型,来获取满足您要求的数据。 人工标注:如果以上两种方案均无法满足您的要求,您也可以使用“数据标注”功能,采用人工标注方式来获取数据。 父主题:
式,从而进行精准的预测和决策。在训练过程中,数据的质量和多样性至关重要。高质量的数据能够提升模型对任务的理解,而多样化的数据则帮助模型更好地应对各种情况。因此,数据的收集和处理是大模型训练中的关键环节。 盘古大模型套件平台通过提供数据获取、清洗、配比与管理等功能,确保构建高质量的训练数据。
度。在处理请求时,模型能够更快地生成结果,减少等待时间,从而提升用户体验。这种快速的推理能力使盘古大模型适用于广泛的应用场景。在需要实时反馈的业务中,如在线客服和智能推荐,盘古大模型能够迅速提供准确的结果。 迁移能力强 盘古大模型的迁移能力是其适应多变业务需求的关键。除了在已有领
properties文件,并根据实际需要配置相应的值。 如果需要自定义配置文件名,可以参考以下代码设置。 // 建议在业务项目入口处配置 // 不需要添加.properties后缀 ConfigLoadUtil.setBaseName("application"); 完整配置项如下: 配置项中的密码等字段建议在
请注意,温度和核采样的作用相近,在实际使用中,为了更好观察是哪个参数对结果造成的影响,因此不建议同时调整这两个参数。 如果您没有专业的调优经验,可以优先使用建议,再结合推理的效果动态调整。 核采样(top_p) 0~1 1 核采样主要用于控制模型输出的多样性。核采样值越大,输出的多样性越高;核采样值越小,输出结果越可以被预测,确定性相对也就越高。
任务规划:将复杂目标任务分解为小的可执行子任务,通过评估、自我反思等方式提升规划成功率。 记忆系统:通过构建记忆模块去管理历史任务和策略,并让Agent结合记忆模块中相关的信息以获取最优化任务解决策略。 任务执行:能通过工具与外界发生联系并产生影响,工具可以自定义,包括查询信息、调用服务、网络搜索、文件管理、调用
任务规划:将复杂目标任务分解为小的可执行子任务,通过评估、自我反思等方式提升规划成功率。 记忆系统:通过构建记忆模块去管理历史任务和策略,并让Agent结合记忆模块中相关的信息以获取最优化任务解决策略。 任务执行:能通过工具与外界发生联系并产生影响,工具可以自定义,包括查询信息、调用服务、网络搜索、文件管理、调用
附录 状态码 错误码 获取项目ID 获取模型调用API地址
智能客服 在政企场景中,传统的智能客服系统常受限于语义泛化能力和意图理解能力,导致用户需求难以准确捕捉,频繁转接至人工客服。这不仅增加了企业的运营成本,也影响了用户体验。盘古大模型的引入为这一问题提供了有效解决方案。 盘古大模型通过将客户知识数据转换为向量并存储在向量数据库中,利用先进的
参见实名认证。 获取账号信息 在调用服务API、SDK时,需要将账号相关的信息作为API凭证传入代码。 API凭证主要包括:IAM用户名、IAM用户名ID、账号名、账号ID、项目ID、项目、所属区域。可登录控制台在“我的凭证 > API凭证”页面获取。 图1 获取账号信息 父主题:
"你有什么办法让孩子写作业吗"} 中控模块:对于中控模块,可以首先尝试使用基础功能模型基于prompt来进行相关中控逻辑的判断,一般情况下能够满足绝大部分场景的需求。如果针对特别细分的垂域场景,且需要中控逻辑能够取得接近100%准确率的效果,则可以按照需求可以准备对应的中控分类数据。以简单的二
运行Agent 在给出的示例中,Agent中预置了2个工具,分别为: meeting_room_status_query:查询会议室的状态,是否被预定或者正在使用中。 reserve_meeting_room:预定会议室。 单轮执行: 调用run接口运行一个Agent: panguAgent
平台资源管理 管理模型资产、推理资产 获取Token消耗规则
优化工具描述 工具依赖的信息,可以通过其他工具获取时,增加关联关系提示: @AgentTool(toolId = "query_reimbursement_limit", toolDesc = "通过用户ID、用户单据、用户最大报销比例获取用户报销额度", toolPrinciple
提示词工程 什么是提示词工程 获取提示词模板 撰写提示词 横向比较提示词效果 批量评估提示词效果 发布提示词
清洗数据集(可选) 清洗算子功能介绍 获取数据清洗模板 创建数据集清洗任务 父主题: 准备盘古大模型训练数据集
产品特点且可以引导观众购买。 微调数据清洗: 下表中列举了本场景常见的数据质量问题以及相应的清洗策略,供您参考: 表1 微调数据清洗步骤 数据问题 清洗步骤与手段 清洗前 清洗后 问题一:数据中存在超链接、异常符号等。 删除数据中的异常字符。 {"context":"轻便折叠户外
自己的模型。 数据工程套件 数据是大模型训练的基础,为大模型提供了必要的知识和信息。数据工程套件作为盘古大模型服务的重要组成部分,具备数据获取、清洗、配比和管理等功能。该套件能够高效收集和处理各种格式的数据,满足不同训练和评测任务的需求。通过提供自动化的质量检测和数据清洗能力,对
数据质量:请检查训练数据中是否存在包含异常字符的数据,可以通过规则进行清洗。 训练参数设置:若数据质量存在问题,且因训练参数设置的不合理而导致过拟合,该现象会更加明显。请检查训练参数中的 “训练轮次”或“学习率”等参数的设置,适当降低这些参数的值,降低过拟合的风险。 推理参数
如果您没有专业的调优经验,可以优先使用平台提供的默认值,再结合训练过程中模型的收敛情况动态调整。 学习率衰减比率(learning_rate_decay_ratio) 0~1 0.01~0.1 学习率衰减比率用于设置训练过程中的学习率衰减的最小值。计算公式为:最小学习率=学习率*学习率衰减比率。