检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
属性编辑 属性页签可展示选中点或边的属性信息,也可对单个点或边的属性进行编辑。 属性编辑的操作如下: 在绘图区选中一个点或边,单击右键,选择“查看属性”,会在右侧显示“属性”页签,展示选中点边的属性信息。 若选中的点有多个标签(label),可单击label后的下拉框来查看其它label
Node2vec算法 概述 Node2vec算法通过调用word2vec算法,把网络中的节点映射到欧式空间,用向量表示节点的特征。 Node2vec算法通过回退参数 P 和前进参数 Q 来生成从每个节点出发的随机步,带有BFS和DFS的混合,回退概率正比于1/P,前进概率正比于1/
共同邻居算法(Common Neighbors) 概述 共同邻居算法(Common Neighbors)是一种常用的基本图分析算法,可以得到两个节点所共有的邻居节点,直观地发现社交场合中的共同好友、以及在消费领域共同感兴趣的商品,进一步推测两个节点之间的潜在关系和相近程度。 适用场景
DSL查询 GES提供的一种graph DSL查询语言,可以利用DSL来完成对图的查询与计算,帮助您低成本设计并运行算法。注意:该功能仅支持2.3.14及以上版本的图。 具体操作步骤如下: 进入图引擎编辑器页面,详细操作请参见访问图引擎编辑器。 在图数据查询区,单击下拉按钮,切换到
Schema编辑 在图引擎编辑器的元数据分析区,您可以进行如下操作: 添加label 统计点边数量 修改label 隐藏label label的导入和导出 删除label 添加label 在图引擎编辑器左侧的元数据列表中,单击,可增加一个新的标签。 Label 名称表示新增标签的名字
性能监控 在运维监控页面左侧导航栏单击“监控>性能监控”,进入性能监控页面。在性能监控页面展示以下这些性能指标的趋势,其中包括: CPU使用率(%) 内存使用率(%) 磁盘使用率(%) 磁盘I/O(KB/s) 网络I/O(KB/s) tomcat连接数使用率(%) swap盘使用率
创建元数据 如果本地或OBS中都没有元数据文件,您可以手动创建元数据文件。 可创建的元数据文件数上限为50,达到上限将不能创建元数据。 操作步骤 在“元数据管理”页面,单击右上角“创建”。 在“创建”页面输入以下参数。 “名称”:输入元数据的名称,文件格式默认为xml。 “存储路径
图实例运维监控页面 登录图引擎服务管理控制台。在左侧导航栏,选择“图管理”。 在图管理列表中,指定图实例的操作列,单击“更多 > 运维监控面板”,进入该图实例的运维监控页面。关于各项监控项指标,请参考监控项列表。
“图管理”页面操作如下: 登录图引擎服务管理控制台。在左侧导航栏,选择“图管理”。 在图管理列表中,选择需要备份的图,在“操作”列单击“备份”。 在弹出的确认提示框中,单击“确定”完成图备份。
具体操作步骤如下: 登录图引擎服务管理控制台,在左侧导航栏选择“备份管理”。 在备份列表中,选择需要删除的备份数据,在“操作”列,单击“删除”。 在弹出的对话框中,单击“是”删除数据。 数据删除后无法恢复,请谨慎操作。 未删除的图的自动备份数据不能删除。 父主题: 备份图和恢复图
具体操作步骤如下: 登录图引擎服务管理控制台,在左侧导航栏选择“备份管理”。 在“备份管理”页面,选择需要恢复数据的备份,在“操作”列单击“恢复”。 在“恢复”页面,选择待恢复图,勾选“恢复操作将覆盖关联图。恢复操作启动后,关联图将重新启动。”,单击“是”。
标签传播算法(Label Propagation) 概述 标签传播算法(Label Propagation)是一种基于图的半监督学习方法,其基本思路是用已标记节点的标签信息去预测未标记节点的标签信息。利用样本间的关系建图,节点包括已标注和未标注数据,其边表示两个节点的相似度,节点的标签按相似度传递给其他节点
关联路径算法(n-Paths) 概述 关联路径算法(n-Paths)用于寻找图中两节点之间在层关系内的n条路径。 适用场景 关联路径算法(n-Paths)适用于关系分析、路径设计、网络规划等场景。 参数说明 表1 关联路径算法(n-Paths)参数说明 参数 是否必选 说明 类型
图探索功能 提供图相关工具来探索图。 多标签图不支持图探索功能。 路径拓展 利用Filtered-query-API原理,对k跳过程进行逐层过滤,列出满足过滤条件的第k跳节点或边。Filtered-query接口说明可参考Filtered-query API。 在图引擎编辑器左侧探索区的
历史查询 在运维监控页面左侧导航栏单击“监控>历史查询”,进入历史查询页面,该页面展示了图实例历史上运行过的异步任务的详情(和业务面任务中心展示的一样)。 图1 历史查询页面 父主题: 监控
查看查询结果 数据分析结束后,您可以直接在绘图区查看结果或者在“查询结果”页签获取结果信息。 查看查询结果的具体步骤如下: 进入图引擎编辑器页面,详细操作请参见访问图引擎编辑器。 在执行Gremlin/Cypher/DSL查询或算法分析之后,在“查询结果”页签下,展示查询结果。 当返回结果很大
k跳算法(k-hop) 概述 k跳算法(k-hop)从起点出发,通过宽度优先搜索(BFS),找出k层与之关联的所有节点。找到的子图称为起点的“ego-net”。k跳算法会返回ego-net中节点的个数。 适用场景 k跳算法(k-hop)适用于关系发现、影响力预测、好友推荐等场景。
最短路径算法(Shortest Path) 概述 最短路径算法(Shortest Path)用以解决图论研究中的一个经典算法问题,旨在寻找图中两节点之间的最短路径。 适用场景 最短路径算法(Shortest Path)适用于路径设计、网络规划等场景。 参数说明 表1 最短路径算法(
关联预测算法(Link Prediction) 概述 关联预测算法(Link Prediction)给定两个节点,根据Jaccard度量方法计算两个节点的相似程度,预测节点之间的紧密关系。 适用场景 关联预测算法(Link Prediction)适用于社交网上的好友推荐、关系预测等场景
Cypher查询 Cypher是一种声明式图查询语言,使用Cypher语句可以查询和修改GES中的数据,并返回结果。 具体操作步骤如下: 进入图引擎编辑器页面,详细操作请参见访问图引擎编辑器。 Cypher查询编译过程中使用了基于label的点边索引。 第一次使用Cypher查询,