检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
AI Gallery功能介绍 面向开发者提供了AI Gallery大模型开源社区,通过大模型为用户提供服务,普及大模型行业。AI Gallery提供了大量基于昇腾云底座适配的三方开源大模型,同步提供了可以快速体验模型的能力、极致的开发体验,助力开发者快速了解并学习大模型。 构建零
Gallery口罩数据集,使用ModelArts自动学习的物体检测算法,识别图片中的人物是否佩戴口罩。 垃圾分类 自动学习 图像分类 该案例基于华为云AI开发者社区AI Gallery中的数据集资产,让零AI基础的开发者完成“图像分类”的AI模型的训练和部署。 ModelArts Standard开发环境案例
deLab功能,一方面,一键进入开发环境,同时预置了免费的算力规格,可直接免费体验Notebook功能;另一方面,针对AI Gallery社区发布的Notebook样例(.ipynb格式文件),可直接在CodeLab中打开,查看他人分享的样例代码。 功能亮点 免费算力 CodeL
第一种,在ModelArts控制台的“总览”界面打开CodeLab,使用的是CPU或GPU资源,无法使用昇腾卡训练。 第二种,如果是AI Gallery社区的Notebook案例,使用的资源是ASCEND的,“Run in ModelArts”跳转到CodeLab,就可以使用昇腾卡进行训练。 也支持切换规格
使用ModelArts Standard自动学习实现口罩检测 该案例是使用华为云一站式AI开发平台ModelArts的新版“自动学习”功能,基于华为云AI开发者社区AI Gallery中的数据集资产,让零AI基础的开发者完成“物体检测”的AI模型的训练和部署。依据开发者提供的标注数据及选择的场景,无需
本案例基于华为云AI开发者社区AI Gallery中的数据集资产,让零AI基础的开发者使用ModelArts Standard的自动学习功能完成“图像分类”AI模型的训练和部署。 面向AI开发零基础的用户 使用Standard自动学习实现口罩检测 本案例基于华为云AI开发者社区AI Gall
参考使用自定义算法构建模型(手写数字识别)。 更多入门实践,请参考《ModelArts入门实践》章节。如果您有其他疑问,您也可以通过华为云社区问答频道来与我们联系探讨。
该问题通常由VS Code安装了第三方中文插件引起。 解决方案 卸载中文插件:如果安装了中文插件,建议先卸载。 如果问题仍未解决,可以在VS Code官方社区查找相关解决方案或更新插件。 父主题: VS Code连接开发环境失败故障处理
ModelArts提供了CodeLab功能,一方面,一键进入开发环境,同时预置了免费的算力规格,可直接免费体验Notebook功能;另一方面,针对AI Gallery社区发布的Notebook样例(.ipynb格式文件),可直接在CodeLab中打开,查看他人分享的样例代码,具体请参见使用CodeLab免费体验Notebook。
针对ModelArts中创建的模型,支持以下发布方式: 发布至AI Gallery AI Gallery是在ModelArts的基础上构建的开发者生态社区,提供算法、模型、数据集等内容的共享,为高校科研机构、模型开发商、解决方案集成商、企业级个人开发者等群体,提供安全、开放的共享,加速AI资产的开发与落地。
量化方法:per-group Step1 模型量化 可以在Huggingface开源社区获取AWQ量化后的模型权重;或者获取FP16/BF16的模型权重之后,通过autoAWQ工具进行量化。 方式一:从开源社区下载发布的AWQ量化模型。 https://huggingface.co/models
per-channel 步骤一 模型量化 可以在Huggingface开源社区获取AWQ量化后的模型权重;或者获取FP16/BF16的模型权重之后,通过autoAWQ工具进行量化。 方式一:从开源社区下载发布的AWQ量化模型。 https://huggingface.co/models
量化方法:per-group Step1 模型量化 可以在Huggingface开源社区获取AWQ量化后的模型权重;或者获取FP16/BF16的模型权重之后,通过autoAWQ工具进行量化。 方式一:从开源社区下载发布的AWQ量化模型。 https://huggingface.co/models
per-channel 步骤一 模型量化 可以在Huggingface开源社区获取AWQ量化后的模型权重;或者获取FP16/BF16的模型权重之后,通过autoAWQ工具进行量化。 方式一:从开源社区下载发布的AWQ量化模型。 https://huggingface.co/models
per-channel Step1 模型量化 可以在Huggingface开源社区获取AWQ量化后的模型权重;或者获取FP16/BF16的模型权重之后,通过autoAWQ工具进行量化。 方式一:从开源社区下载发布的AWQ量化模型。 https://huggingface.co/models
使用Advisor工具分析生成调优建议 关于Advisor使用及安装过程请参见昇腾社区Gitee。最后生成导出的各类场景的建议包含以下两种: Terminal日志信息的概览建议。 包含Detail信息及修改示例的HTML信息。 按照建议信息做如下修改: 亲和优化器使能,在train
观察上一章Loss趋势,在首个Step有较小偏差,所以对第一个Step进行比对分析。此处使用Msprobe的整网Dump和比对分析功能。 首先安装社区Msprobe工具,命令如下: pip install mindstudio-probe 使能工具进行数据Dump分析。本实验可在train
per-group。 Step1 模型量化 可以在Huggingface开源社区获取AWQ量化后的模型权重;或者获取FP16/BF16的模型权重之后,通过autoAWQ工具进行量化。 方式一:从开源社区下载发布的AWQ量化模型。 https://huggingface.co/models
per-group。 Step1 模型量化 可以在Huggingface开源社区获取AWQ量化后的模型权重;或者获取FP16/BF16的模型权重之后,通过autoAWQ工具进行量化。 方式一:从开源社区下载发布的AWQ量化模型。 https://huggingface.co/models
模型:结构实现和社区一致,Huggingface模型开箱即用,同时可以快速适配新模型。 调用:提供高性能算子下发和图模式两种方案,兼顾性能和灵活性。 特性:服务调度、特性实现和社区一致,针对昇腾硬件做亲和替换和优化。 接口:离线SDK、在线OpenAI Server和社区完全一致,无缝迁移。