检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
服务管理权限 表1 服务管理细化权限说明 权限 对应API接口 授权项 依赖的授权项 IAM项目 企业项目 部署模型服务 POST /v1/{project_id}/services modelarts:service:create - √ √ 查询模型服务列表 GET /v1/{
工作空间管理权限 表1 工作空间管理细化权限说明 权限 对应API接口 授权项 依赖的授权项 IAM项目 企业项目 创建工作空间 POST /v1/{project_id}/workspaces modelarts:workspace:create - √ √ 查询工作空间列表 GET
历史API 数据管理(旧版) 开发环境(旧版) 训练管理(旧版)
训练作业权限 表1 训练作业(新版)细化权限说明 权限 对应API接口 授权项 依赖的授权项 IAM项目 企业项目 创建训练作业 POST /v2/{project_id}/training-jobs modelarts:trainJob:create swr:repository
开发环境管理 创建Notebook实例 查询Notebook实例列表 查询所有Notebook实例列表 查询Notebook实例详情 更新Notebook实例 删除Notebook实例 通过运行的实例保存成容器镜像 查询Notebook支持的有效规格列表 查询Notebook支持的可切换规格列表
产品发布说明 ModelArts版本配套关系表 昇腾云服务6.3.912版本说明 昇腾云服务6.3.911版本说明 昇腾云服务6.3.910版本说明(推荐) 昇腾云服务6.3.909版本说明 昇腾云服务6.3.908版本说明 昇腾云服务6.3.907版本说明 昇腾云服务6.3.906
应用迁移 模型适配 pipeline代码适配 父主题: 基于AIGC模型的GPU推理业务迁移至昇腾指导
模型精度调优 场景介绍 精度问题诊断 精度问题处理 父主题: 基于AIGC模型的GPU推理业务迁移至昇腾指导
性能调优 单模型性能测试工具Mindspore lite benchmark 单模型性能调优AOE 父主题: 基于AIGC模型的GPU推理业务迁移至昇腾指导
准备工作 准备环境 准备代码 准备数据 准备镜像 父主题: 主流开源大模型基于Lite Server适配PyTorch NPU训练指导(6.3.905)
训练脚本说明 训练启动脚本说明和参数配置 训练的数据集预处理说明 训练中的权重转换说明 训练tokenizer文件说明 父主题: 主流开源大模型基于Lite Server适配PyTorch NPU训练指导(6.3.905)
常见错误原因和解决方法 显存溢出错误 网卡名称错误 保存ckpt时超时报错 Git下载代码时报错 父主题: 主流开源大模型基于Lite Server适配ModelLink PyTorch NPU训练指导(6.3.907)
推理模型量化 使用AWQ量化 使用SmoothQuant量化 使用kv-cache-int8量化 父主题: 主流开源大模型基于Lite Server适配PyTorch NPU推理指导(6.3.907)
调试与训练 单机单卡 单机多卡 多机多卡 父主题: 专属资源池训练
单机单卡 线下容器镜像构建及调试 上传镜像 上传数据和算法至OBS(首次使用时需要) 使用Notebook进行代码调试 创建训练任务 监控资源 父主题: 调试与训练
多机多卡 线下容器镜像构建及调试 上传数据至OBS(首次使用时需要) 上传算法至SFS 创建训练任务 父主题: 调试与训练
Standard推理部署 ModelArts Standard推理服务访问公网方案 端到端运维ModelArts Standard推理服务方案 使用自定义引擎在ModelArts Standard创建模型 使用大模型在ModelArts Standard创建模型部署在线服务 第三方推理框架迁移到
Standard模型训练 使用ModelArts Standard自定义算法实现手写数字识别 基于ModelArts Standard运行GPU训练作业
基于AIGC模型的GPU推理业务迁移至昇腾指导 场景介绍 迁移环境准备 pipeline应用准备 应用迁移 迁移效果校验 模型精度调优 性能调优 常见问题 父主题: GPU业务迁移至昇腾训练推理
MLLM多模态模型训练推理 Qwen-VL基于Standard+OBS+SFS适配PyTorch NPU训练指导(6.3.912) Qwen-VL模型基于Standard+OBS适配PyTorch NPU训练指导(6.3.912) Qwen-VL基于Lite Server适配PyTorch