检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
这种方法由Lasserre et al. (2006) 提出,正则化一个模型(监督模式下训练的分类器)的参数,使其接近另一个无监督模式下训练的模型(捕捉观察到的输入数据的分布)的参数。这种构造架构使得许多分类模型中的参数能与之对应的无监督模型的参数匹配。参数范数惩罚是正则化参数使
机器学习可以让我们解决一些人为设计和实现固定程序很难解决的问题。从科学和哲学的角度来看,机器学习受到关注是因为提高我们对机器学习的认识需要提高我们对智能背后原理的理解。 如果考虑 “任务”比较正式的定义,那么学习的过程并不是任务。 在相对正式的
权重比例推断规则在其他设定下也是精确的,包括条件正态输出的回归网络以及那些隐藏层不包含非线性的深度网络。然而,权重比例推断规则对具有非线性的深度模型仅仅是一个近似。虽然这个近似尚未有理论上的分析,但在实践中往往效果很好。Goodfellow et al. (2013b) 实验发现
在许多情况下,神经网络在独立同分布的测试集上进行评估已经达到了人类表现。因此,我们自然要怀疑这些模型在这些任务上是否获得了真正的人类层次的理解。为了探索网络对底层任务的理解层次,我们可以探索这个模型错误分类的例子。 Szegedy et al. (2014b) 发现,在精度达到人
没有免费午餐定理暗示我们必须在特定任务上设计性能良好的机器学习算法。我们建立一组学习算法的偏好来达到这个要求。当这些偏好和我们希望算法解决的学习问题相吻合时,性能会更好。 至此,我们具体讨论修改学习算法的方法只有,通过增加或减少学习算法可选假设空间的
接着看梯度下降,用循环来实现。 ```python #循环迭代20次 x,y=0.5,0.8 w=0;lr=0.5 #lr学习率=0.5 w_record=[] loss_record=[] for iter in range(20): pred=x*w loss=((pred-y)**2)/2
x预测 y(i))共享相同的输入 x 以及一些中间层表示 h(share),能学习共同的因素池。该模型通常可以分为两类相关的参数:多任务学习在深度学习框架中可以以多种方式进行,该图说明了任务共享相同输入但涉及不同目标随机变量的常见情况。深度网络的较低层(无论是监督前馈的,还是包括向下箭
由于计算好大一批数据才进行一次梯度下降,会导致达到相同精度所需的训练时间变长;batch_size一般不影响最终精度,主要影响训练速度,每次做不同的训练任务,应该去尝试、总结合适的batch_size值,最后跑该类任务时就固定使用该batch_size3优化器指梯度下降的计算方法,
名词解释1. 端到端: 端到端是网络连接网络要通信,必须建立连接,不管有多远,中间有多少机器,都必须在两头(源和目的)间建立连接,一旦连接建立起来,就说已经是端到端连接了,即端到端是逻辑链路,这条路可能经过了很复杂的物理路线,但两端主机不管,只认为是有两端的连接,而且一
过拟合,欠拟合 过拟合(overfitting):学习能力过强,以至于把训练样本所包含的不太一般的特性都学到了。 欠拟合(underfitting):学习能太差,训练样本的一般性质尚未学好。 下面是直观解释:
组件学习组件学习不仅使用一个模型的知识,还使用多个模型的知识。人们相信,通过独特的信息组合或输入(包括静态和动态),深度学习可以比单一模式更深入地理解和表现。迁移学习是组件学习的一个非常明显的例子。基于这一思想,对类似问题预先训练的模型权重可用于对特定问题进行微调。为了区分不同类
的情况下,在频谱图上可能找不出故障频率。那该怎么办呢?深度学习提供了一种思路。顺便推荐一种专门针对强噪声情况下故障诊断的深度学习方法——深度残差收缩网络。深度残差收缩网络在其内部采用了软阈值函数,类似于小波阈值降噪,在深度学习模型的内部,自动消除噪声信息,从而获得更准确的故障特征
1 机器学习与深度学习 11.1.1 机器学习与深度学习的关系 21.1.2 传统机器学习与深度学习的对比 31.2 统计学与深度学习 51.2.1 统计学与深度学习的关系 51.2.2 基于统计的深度学习技术 61.3 本书涉及的深度学习框架 81.4 优化深度学习的方法 81.5 深度学习展望
人工智能的发展,其中以深度学习为代表的算法在大多数领域都超越了传统算法,成为学术界和工业界持续研究和关注的对象。深度学习的热潮带来了深度学习框架的不断发展和进步,通过这些框架,我们可以更加灵活且高效地设计网络结构和训练模型。这段时期涌现出来众多优秀的深度学习框架,比如Amazon
流形 (manifold) 指连接在一起的区域。数学上,它是指一组点,且每个点都有其邻域。给定一个任意的点,其流形局部看起来像是欧几里得空间。日常生活中,我们将地球视为二维平面,但实际上它是三维空间中的球状流形。 每个点周围邻域的定义暗示着存在变换能够从一个
流形 (manifold) 指连接在一起的区域。数学上,它是指一组点,且每个点都有其邻域。给定一个任意的点,其流形局部看起来像是欧几里得空间。日常生活中,我们将地球视为二维平面,但实际上它是三维空间中的球状流形。每个点周围邻域的定义暗示着存在变换能够从一个位置移动到其邻域位置。例
FCN的基本概念:FCN是应用在图像分割的代表作, 是一种端到端(end to end)的图像分割方法, 让网络做像素级别的预测直接得出label map。因为FCN网络中所有的层都是卷积层,故称为全卷积网络。第一个图是原图第二个图识别出人第三个图在识别人的基础上,分别出人是谁。
数据越多其效果相对就会越好,在没有大数据的情况下,深度学习的效果将会显著下降。深度学习近年来取得了举世瞩目的成就,被广泛应用在许多领域,例如内容搜索、语音识别、图像识别等。但是现在看来,在一些场景上似乎贝叶斯规划学习要比深度学习的表现更好一点,因为这种方法更加适合我们人类适应环境
流形 (manifold) 指连接在一起的区域。数学上,它是指一组点,且每个点都有其邻域。给定一个任意的点,其流形局部看起来像是欧几里得空间。日常生活中,我们将地球视为二维平面,但实际上它是三维空间中的球状流形。 每个点周围邻域的定义暗示着存在变换能够从一个
突然打破了这个天花板,他们惊人地超出了10.8个百分点,赢得了比赛。那个教授便是杰弗里·辛顿,他们使用的技术叫做深度学习。自20世纪80年代以来,辛顿一直致力于深度学习的研究工作,由于缺乏数据和计算能力,其有效性受到了限制,一直到2012年才取得成果。辛顿对这项技术的坚定信念最终