深度学习图像分类结果评估 内容精选 换一换
  • 深度学习

    华为云计算 云知识 深度学习 深度学习 时间:2020-11-23 16:30:56 深度学习( Deep Learning,DL)是机器学习的一种,机器学习是实现人工智能的必由之路。深度学习的概念源于人工神经网络的研究,包含多个隐藏层的多层感知器就是深度学习结构。深度学习通过组合低层特

    来自:百科

    查看更多 →

  • 深度学习概览

    华为云计算 云知识 深度学习概览 深度学习概览 时间:2020-12-17 10:03:07 HCIA-AI V3.0系列课程。本课程主要讲述深度学习相关的基本知识,其中包括深度学习的发展历程、深度学习神经 网络的部件、深度学习神经网络不同的类型以及深度学习工程中常见的问题。 目标学员

    来自:百科

    查看更多 →

  • 深度学习图像分类结果评估 相关内容
  • 大V讲堂——双向深度学习

    大V讲堂——双向深度学习 大V讲堂——双向深度学习 时间:2020-12-09 14:52:19 以当今研究趋势由前馈学习重新转入双向对偶系统为出发点,从解码与编码、识别与重建、归纳与演绎、认知与求解等角度,我们将概括地介绍双向深度学习的历史、发展现状、应用场景,着重介绍双向深度学习理论、算法和应用示例。

    来自:百科

    查看更多 →

  • 从MindSpore手写数字识别学习深度学习

    从MindSpore手写数字识别学习深度学习 从MindSpore手写数字识别学习深度学习 时间:2020-11-23 16:08:48 深度学习作为机器学习分支之一,应用日益广泛。 语音识别 、自动 机器翻译 、即时视觉翻译、刷脸支付、人脸考勤……不知不觉,深度学习已经渗入到我们生活中的每个

    来自:百科

    查看更多 →

  • 深度学习图像分类结果评估 更多内容
  • AI技术领域课程--深度学习

    类的水平。本课程将介绍深度学习算法的知识。 课程简介 本课程将会探讨深度学习中的基础理论、算法、使用方法、技巧与不同的深度学习模型。 课程目标 通过本课程的学习,使学员: 1、掌握神经网络基础理论。 2、掌握深度学习中数据处理的基本方法。 3、掌握深度学习训练中调参、模型选择的基本方法。

    来自:百科

    查看更多 →

  • 自动学习之图像分类

    查询作业资源规格:URI ModelArts自动学习与ModelArts PRO的区别 垃圾分类(使用新版自动学习实现图像分类):步骤5:创建新版自动学习图像分类项目 修订记录 垃圾分类(使用新版自动学习实现图像分类):步骤5:创建新版自动学习图像分类项目 创建项目:创建项目 华为企业人工智能高级开发者培训:培训内容

    来自:百科

    查看更多 →

  • 大V讲堂——能耗高效的深度学习

    华为云计算 云知识 大V讲堂——能耗高效的深度学习 大V讲堂——能耗高效的深度学习 时间:2020-12-08 10:09:21 现在大多数的AI模型,尤其是计算视觉领域的AI模型,都是通过深度神经网络来进行构建的,从2015年开始,学术界已经开始注意到现有的神经网络模型都是需要

    来自:百科

    查看更多 →

  • 基于深度学习算法的语音识别

    华为云计算 云知识 基于深度学习算法的语音识别 基于深度学习算法的语音识别 时间:2020-12-01 09:50:45 利用新型的人工智能(深度学习)算法,结合清华大学开源语音数据集THCHS30进行语音识别的实战演练,让使用者在了解语音识别基本的原理与实战的同时,更好的了解人工智能的相关内容与应用。

    来自:百科

    查看更多 →

  • 深度学习:IoT场景下的AI应用与开发

    华为云计算 云知识 深度学习:IoT场景下的AI应用与开发 深度学习:IoT场景下的AI应用与开发 时间:2020-12-08 10:34:34 本课程旨基于自动售卖机这一真实场景开发,融合了物联网与AI两大技术方向,向您展示AI与IoT融合的场景运用并解构开发流程;从 物联网平台

    来自:百科

    查看更多 →

  • 华为云ModelArts自动学习之图像分类

    华为云ModelArts自动学习图像分类 华为云ModelArts自动学习图像分类 时间:2020-11-27 10:18:33 本视频主要为您介绍华为云ModelArts自动学习图像分类的操作教程指导。 什么是图像分类? 识别图像内容(类别)。 步骤 创建 OBS 桶及图像分类项目-上传图片数据-数据标注-模型训练-部署上线

    来自:百科

    查看更多 →

  • 计算机视觉基础:深度学习和神经网络

    、自动机器学习等领域。 课程简介 本教程介绍了AI解决方案深度学习的发展前景及其面临的巨大挑战;深度神经网络的基本单元组成和产生表达能力的方式及复杂的训练过程。 课程目标 通过本课程的学习,使学员: 1、了解深度学习。 2、了解深度神经网络。 课程大纲 第1章 深度学习和神经网络

    来自:百科

    查看更多 →

  • 【云小课】EI第27课模型调优利器-ModelArts模型评估诊断

    能力。模型评价指标是评估模型泛化能力的标准,不同的指标往往会导致不同的评判结果。 ModelArts模型评估/诊断功能针对不同类型模型的评估任务,提供相应的评估指标。在展示评估结果的同时,会根据不同的数据特征对模型进行详细的评估,获得每个数据特征对评估指标的敏感度,并给出优化建议

    来自:百科

    查看更多 →

  • 人工智能学习入门

    AI技术领域课程--机器学习 AI技术领域课程--深度学习 AI技术领域课程--生成对抗网络 AI技术领域课程--强化学习 AI技术领域课程--图网络 AI技术领域课程--机器学习 AI技术领域课程--深度学习 AI技术领域课程--生成对抗网络 AI技术领域课程--强化学习 AI技术领域课程--图网络

    来自:专题

    查看更多 →

  • 人工智能学习入门

    AI技术领域课程--机器学习 AI技术领域课程--深度学习 AI技术领域课程--生成对抗网络 AI技术领域课程--强化学习 AI技术领域课程--图网络 AI技术领域课程--机器学习 AI技术领域课程--深度学习 AI技术领域课程--生成对抗网络 AI技术领域课程--强化学习 AI技术领域课程--图网络

    来自:专题

    查看更多 →

  • 2020年华为云AI实战营

    课程目标 通过本课程的学习,使学员: 1、熟练使用华为云ModelArts一站式 AI开发平台 ; 2、系统、完整地了解多项AI领域的基础知识; 3、学习多项AI领域的经典算法; 4、掌握一定的模型调优能力,能自己动手优化模型; 课程大纲 第1章 图像分类 第2章 物体检测 第3章

    来自:百科

    查看更多 →

  • Data Studio的查询结果窗口介绍

    华为云计算 云知识 Data Studio的查询结果窗口介绍 Data Studio的查询结果窗口介绍 时间:2021-05-31 18:27:24 数据库 Data Studio的查询结果窗口,会展示查询语句返回的结果,用户可对结果执行排序、动态筛选、复制、导出、编辑等操作。 文中课程

    来自:百科

    查看更多 →

  • MySQL Workbench的查询结果窗口功能

    MySQL Workbench的查询结果窗口功能 MySQL Workbench的查询结果窗口功能 时间:2021-05-31 18:48:31 数据库 在MySQL Workbench的查询结果窗口,用户可以展示查询语句返回的结果,也可对结果执行排序、动态筛选、复制、导出、编辑等操作。

    来自:百科

    查看更多 →

  • ModelArts是什么_AI开发平台_ModelArts功能

    特别是深度学习的大数据集,让训练结果可重现。 2、极“快”致“简”模型训练 自研的MoXing深度学习框架,更高效更易用,大大提升训练速度。 3、多场景部署 支持模型部署到多种生产环境,可部署为云端在线推理和批量推理,也可以直接部署到端和边。 4、自动学习 支持多种自动学习能力,

    来自:专题

    查看更多 →

  • 租用CDN实施的考虑与评估

    华为云计算 云知识 租用 CDN 实施的考虑与评估 租用CDN实施的考虑与评估 时间:2022-06-22 11:45:41 【CDN618活动】 使用CDN服务是需要考虑CDN本身的服务能力,还应该结合用户使用需求,不同类型和行业的网站对CDN服务的需求也是不一样的。下面结合互联网

    来自:百科

    查看更多 →

  • AI全栈成长计划-AI进阶篇

    全流程AI开发平台介绍-ModelArts 第2章 AI模型开发-图像分类 第3章 AI模型开发-物体检测 第4章 AI进阶篇阶段总结直播&问题答疑 AI开发平台ModelArts ModelArts是面向开发者的一站式AI开发平台,为机器学习深度学习提供海量数据预处理及半自动化标注、大规模分布式

    来自:百科

    查看更多 →

  • 什么是AI开发

    好的数据进行探索分析,从中发现因果关系、内部联系和业务规律,为商业目的提供决策参考。训练模型的结果通常是一个或多个机器学习深度学习模型,模型可以应用到新的数据中,得到预测、评价等结果。 业界主流的AI引擎有TensorFlow、Spark_MLlib、MXNet、Caffe、P

    来自:百科

    查看更多 →

共105条
看了本文的人还看了