AI&大数据

高精度,多场景,快响应,AI&大数据助力企业降本增效

 
 

    深度学习 预测领域 内容精选 换一换
  • AI技术领域课程--深度学习

    华为云计算 云知识 AI技术领域课程--深度学习 AI技术领域课程--深度学习 时间:2020-12-15 15:23:12 深度学习是一种以人工神经网络为架构,对数据进行表征学习的算法。目前,在图像、 语音识别 自然语言处理 、强化学习等许多技术领域中,深度学习获得了广泛的应用,并且在

    来自:百科

    查看更多 →

  • 深度学习

    华为云计算 云知识 深度学习 深度学习 时间:2020-11-23 16:30:56 深度学习( Deep Learning,DL)是机器学习的一种,机器学习是实现人工智能的必由之路。深度学习的概念源于人工神经网络的研究,包含多个隐藏层的多层感知器就是深度学习结构。深度学习通过组合低层特

    来自:百科

    查看更多 →

  • 深度学习 预测领域 相关内容
  • 深度学习概览

    华为云计算 云知识 深度学习概览 深度学习概览 时间:2020-12-17 10:03:07 HCIA-AI V3.0系列课程。本课程主要讲述深度学习相关的基本知识,其中包括深度学习的发展历程、深度学习神经 网络的部件、深度学习神经网络不同的类型以及深度学习工程中常见的问题。 目标学员

    来自:百科

    查看更多 →

  • 自动学习之预测分析

    选择标签列:操作步骤 银行存款预测(使用新版自动学习实现预测分析):步骤3:创建预测分析项目 创建项目:创建项目 自动学习简介:模型部署规格 ModelArts自动学习与ModelArts PRO的区别 查询作业资源规格:URI 部署上线:服务测试 成本规划与计划:预测和估算成本 ML Studio简介:ML

    来自:百科

    查看更多 →

  • 深度学习 预测领域 更多内容
  • 大V讲堂——双向深度学习

    大V讲堂——双向深度学习 大V讲堂——双向深度学习 时间:2020-12-09 14:52:19 以当今研究趋势由前馈学习重新转入双向对偶系统为出发点,从解码与编码、识别与重建、归纳与演绎、认知与求解等角度,我们将概括地介绍双向深度学习的历史、发展现状、应用场景,着重介绍双向深度学习理论、算法和应用示例。

    来自:百科

    查看更多 →

  • 从MindSpore手写数字识别学习深度学习

    从MindSpore手写数字识别学习深度学习 从MindSpore手写数字识别学习深度学习 时间:2020-11-23 16:08:48 深度学习作为机器学习分支之一,应用日益广泛。语音识别、自动 机器翻译 、即时视觉翻译、刷脸支付、人脸考勤……不知不觉,深度学习已经渗入到我们生活中的每个

    来自:百科

    查看更多 →

  • AI技术领域课程--机器学习

    第7章 有监督学习-决策树 第8章 有监督学习-集成算法概述 第9章 有监督学习-Bagging 第10章 有监督学习-随机森林 第11章 有监督学习-Boosting 第12章 有监督学习-Adaboost 第13章 有监督学习-GBDT 第14章 有监督学习-Xgboost 第15章

    来自:百科

    查看更多 →

  • 基于深度学习算法的语音识别

    华为云计算 云知识 基于深度学习算法的语音识别 基于深度学习算法的语音识别 时间:2020-12-01 09:50:45 利用新型的人工智能(深度学习)算法,结合清华大学开源语音数据集THCHS30进行语音识别的实战演练,让使用者在了解语音识别基本的原理与实战的同时,更好的了解人工智能的相关内容与应用。

    来自:百科

    查看更多 →

  • 大V讲堂——能耗高效的深度学习

    华为云计算 云知识 大V讲堂——能耗高效的深度学习 大V讲堂——能耗高效的深度学习 时间:2020-12-08 10:09:21 现在大多数的AI模型,尤其是计算视觉领域的AI模型,都是通过深度神经网络来进行构建的,从2015年开始,学术界已经开始注意到现有的神经网络模型都是需要

    来自:百科

    查看更多 →

  • 华为云ModelArts自动学习之预测分析

    云知识 华为云ModelArts自动学习预测分析 华为云ModelArts自动学习预测分析 时间:2020-11-27 10:01:31 本视频主要为您介绍华为云ModelArts自动学习预测分析的操作教程指导。 什么是预测分析? 预测分析应用是一种针对结构化数据的模型自动

    来自:百科

    查看更多 →

  • 深度学习:IoT场景下的AI应用与开发

    华为云计算 云知识 深度学习:IoT场景下的AI应用与开发 深度学习:IoT场景下的AI应用与开发 时间:2020-12-08 10:34:34 本课程旨基于自动售卖机这一真实场景开发,融合了物联网与AI两大技术方向,向您展示AI与IoT融合的场景运用并解构开发流程;从 物联网平台

    来自:百科

    查看更多 →

  • 计算机视觉基础:深度学习和神经网络

    、自动机器学习领域。 课程简介 本教程介绍了AI解决方案深度学习的发展前景及其面临的巨大挑战;深度神经网络的基本单元组成和产生表达能力的方式及复杂的训练过程。 课程目标 通过本课程的学习,使学员: 1、了解深度学习。 2、了解深度神经网络。 课程大纲 第1章 深度学习和神经网络

    来自:百科

    查看更多 →

  • 华为云盘古大模型_华为云AI大模型_盘古人工智能

    盘古预测大模型产品功能 回归预测 用于连续值预测,可自动进行任务理解,分析选择最适合的回归模型集合,并融合多个模型来提升回归预测精度 分类预测 用于离散值的预测,如:不同类别或标签;基于任务理解和模型选择推荐能力,可自动选择多个分类模型并基于动态图算法进行融合,来提升预测性能 时间序列预测

    来自:专题

    查看更多 →

  • 网络人工智能高校训练营-中山大学&网络人工智能联合出品

    内容大纲: 1、人工智能基本知识体系; 2、机器学习基础与实践; 3、深度学习基础与实践; 4、强化学习基础与实践; 5、Vega简介、架构和Pipeline; 6、网络人工智能AutoML简介; 7、电信领域业务问题和挑战及Vega在电信领域中的应用; 8、网络人工智能课程资源库介绍;

    来自:百科

    查看更多 →

  • BPM软件_BPM分析软件_BPM领域

    行建模、分析和优化,以实现战略业务目标,其特点是注重流程驱动为核心,实现端到端全流程信息化管理。BPM方法可以应用于经常重复、正在进行或可预测的任务和流程。 企业为什么需要BPM系统? 1、BPM系统有助于控制混乱和繁琐的过程;2、BPM系统可以创建、映射、分析和改进业务流程;3

    来自:专题

    查看更多 →

  • 工业智能体应用场景

    多种算法内置 基于已有时间序列算法,对产品缺陷进行预测,挖掘须重点关注质量的产品 专业 数据仓库 专业数仓支持设计应用多维分析,快速响应 智能设备维护 预测性维护,根据系统过去和现在的状态,采用时间序列预测、神经网络预测和回归分析等预测推理方法,预测系统将来是否会发生故障,何时发生故障,发生

    来自:百科

    查看更多 →

  • GaussDB(DWS)可以应用在哪些领域

    云知识 GaussDB (DWS)可以应用在哪些领域 GaussDB(DWS)可以应用在哪些领域 时间:2021-06-17 11:32:01 数据库 GaussDB(DWS)可广泛应用于金融、车联网、政企、电商、能源、电信等多个领域,2017~2019已连续三年入选Gartner

    来自:百科

    查看更多 →

  • 机器学习概览

    需要掌握人工智能技术,希望具备及其学习深度学习算法应用能力,希望掌握华为人工智能相关产品技术的工程师 课程目标 学完本课程后,您将能够:掌握学习算法定义与机器学习的流程;了解常用机器学习算法;了解超参数、梯度下降和交叉验证等概念。 课程大纲 1. 机器学习算法 2. 机器学习的分类 3. 机器学习的整体流程

    来自:百科

    查看更多 →

  • 自动学习

    华为云计算 云知识 自动学习 自动学习 时间:2020-12-10 16:52:26 自动学习是什么?ModelArts自动学习是帮助人们实现AI应用的低门槛、高灵活、零代码的定制化模型开发工具。自动学习功能根据标注数据自动设计模型、自动调参、自动训练、自动压缩和部署模型。开发者

    来自:百科

    查看更多 →

  • 【云小课】EI第20课 ModelArts Pro 自然语言处理套件 高效构建行业文本处理模型

    自然语言处理套件 高效构建行业文本处理模型 AI开发平台 ModelArts ModelArts是面向开发者的一站式AI开发平台,为机器学习深度学习提供海量数据预处理及半自动化标注、大规模分布式Training、自动化模型生成,及端-边-云模型按需部署能力,帮助用户快速创建和部署模型,管理全周期AI工作流。

    来自:百科

    查看更多 →

  • 什么是AI开发

    。AI最核心的能力就是根据给定的输入做出判断或预测。 AI开发的目的是什么 AI开发的目的是将隐藏在一大批数据背后的信息集中处理并进行提炼,从而总结得到研究对象的内在规律。 对数据进行分析,一般通过使用适当的统计、机器学习深度学习等方法,对收集的大量数据进行计算、分析、汇总和整

    来自:百科

    查看更多 →

共105条
看了本文的人还看了