AI&大数据

高精度,多场景,快响应,AI&大数据助力企业降本增效

 
 

    机器学习深度神经网络 内容精选 换一换
  • 计算机视觉基础:深度学习和神经网络

    别、自动机器学习等领域。 课程简介 本教程介绍了AI解决方案深度学习的发展前景及其面临的巨大挑战;深度神经网络的基本单元组成和产生表达能力的方式及复杂的训练过程。 课程目标 通过本课程的学习,使学员: 1、了解深度学习。 2、了解深度神经网络。 课程大纲 第1章 深度学习和神经网络

    来自:百科

    查看更多 →

  • 深度学习

    华为云计算 云知识 深度学习 深度学习 时间:2020-11-23 16:30:56 深度学习( Deep Learning,DL)是机器学习的一种,机器学习是实现人工智能的必由之路。深度学习的概念源于人工神经网络的研究,包含多个隐藏层的多层感知器就是深度学习结构。深度学习通过组合低层特

    来自:百科

    查看更多 →

  • 机器学习深度神经网络 相关内容
  • 深度学习概览

    华为云计算 云知识 深度学习概览 深度学习概览 时间:2020-12-17 10:03:07 HCIA-AI V3.0系列课程。本课程主要讲述深度学习相关的基本知识,其中包括深度学习的发展历程、深度学习神经 网络的部件、深度学习神经网络不同的类型以及深度学习工程中常见的问题。 目标学员

    来自:百科

    查看更多 →

  • 机器学习概览

    需要掌握人工智能技术,希望具备及其学习深度学习算法应用能力,希望掌握华为人工智能相关产品技术的工程师 课程目标 学完本课程后,您将能够:掌握学习算法定义与机器学习的流程;了解常用机器学习算法;了解超参数、梯度下降和交叉验证等概念。 课程大纲 1. 机器学习算法 2. 机器学习的分类 3. 机器学习的整体流程

    来自:百科

    查看更多 →

  • 机器学习深度神经网络 更多内容
  • 从MindSpore手写数字识别学习深度学习

    从MindSpore手写数字识别学习深度学习 从MindSpore手写数字识别学习深度学习 时间:2020-11-23 16:08:48 深度学习作为机器学习分支之一,应用日益广泛。 语音识别 、自动机器翻译、即时视觉翻译、刷脸支付、人脸考勤……不知不觉,深度学习已经渗入到我们生活中的每个

    来自:百科

    查看更多 →

  • 大V讲堂——双向深度学习

    大V讲堂——双向深度学习 大V讲堂——双向深度学习 时间:2020-12-09 14:52:19 以当今研究趋势由前馈学习重新转入双向对偶系统为出发点,从解码与编码、识别与重建、归纳与演绎、认知与求解等角度,我们将概括地介绍双向深度学习的历史、发展现状、应用场景,着重介绍双向深度学习理论、算法和应用示例。

    来自:百科

    查看更多 →

  • AI技术领域课程--深度学习

    类的水平。本课程将介绍深度学习算法的知识。 课程简介 本课程将会探讨深度学习中的基础理论、算法、使用方法、技巧与不同的深度学习模型。 课程目标 通过本课程的学习,使学员: 1、掌握神经网络基础理论。 2、掌握深度学习中数据处理的基本方法。 3、掌握深度学习训练中调参、模型选择的基本方法。

    来自:百科

    查看更多 →

  • AI技术领域课程--机器学习

    第7章 有监督学习-决策树 第8章 有监督学习-集成算法概述 第9章 有监督学习-Bagging 第10章 有监督学习-随机森林 第11章 有监督学习-Boosting 第12章 有监督学习-Adaboost 第13章 有监督学习-GBDT 第14章 有监督学习-Xgboost 第15章

    来自:百科

    查看更多 →

  • 大V讲堂——能耗高效的深度学习

    值。 课程简介 为了解决真实世界中的问题,我们的深度学习算法需要巨量的数据,同时也需要机器拥有处理庞大数据的能力,在现实世界中部署神经网络需要平衡效率和能耗以及成本的关系。本课程介绍了能耗高效的深度学习。 课程目标 通过本课程的学习,使学员了解如下知识: 1、高效的结构设计。 2、用NAS搜索轻量级网络。

    来自:百科

    查看更多 →

  • 实战篇:神经网络赋予机器识图的能力

    手写数字识别模型。 课程目标 通过本课程的学习使学员掌握深度学习平台应用及入门深度学习。 课程大纲 第1节 导读&往期内容回顾 第2节 深度学习平台介绍 第3节 深度学习入门示例介绍 第4节 神经网络构建多分类模型 第5节 华为云深度学习平台实操演练 华为云 面向未来的智能世界,

    来自:百科

    查看更多 →

  • 基于深度学习算法的语音识别

    华为云计算 云知识 基于深度学习算法的语音识别 基于深度学习算法的语音识别 时间:2020-12-01 09:50:45 利用新型的人工智能(深度学习)算法,结合清华大学开源语音数据集THCHS30进行语音识别的实战演练,让使用者在了解语音识别基本的原理与实战的同时,更好的了解人工智能的相关内容与应用。

    来自:百科

    查看更多 →

  • 深度学习:IoT场景下的AI应用与开发

    华为云计算 云知识 深度学习:IoT场景下的AI应用与开发 深度学习:IoT场景下的AI应用与开发 时间:2020-12-08 10:34:34 本课程旨基于自动售卖机这一真实场景开发,融合了物联网与AI两大技术方向,向您展示AI与IoT融合的场景运用并解构开发流程;从 物联网平台

    来自:百科

    查看更多 →

  • 神经网络基础

    华为云计算 云知识 神经网络基础 神经网络基础 时间:2020-12-07 16:53:14 HCIP-AI EI Developer V2.0系列课程。神经网络深度学习的重要基础,理解神经网络的基本原理、优化目标与实现方法是学习后面内容的关键,这也是本课程的重点所在。 目标学员

    来自:百科

    查看更多 →

  • 大V讲堂——神经网络结构搜索

    云知识 大V讲堂——神经网络结构搜索 大V讲堂——神经网络结构搜索 时间:2020-12-14 10:07:11 神经网络结构搜索是当前深度学习最热门的话题之一,已经成为了一大研究潮流。本课程将介绍神经网络结构搜索的理论基础、应用和发展现状。 课程简介 神经网络结构搜索(NAS)

    来自:百科

    查看更多 →

  • TBE基本概念之NPU

    accelerator)是一类专用于人工智能(特别是人工神经网络机器视觉、机器学习等)硬件加速的微处理器或计算系统。典型的应用包括机器人学、物联网等数据密集型应用或传感器驱动的任务。” 本系列课程中,NPU可以特指为昇腾AI处理器。 文中课程 更多精彩课程、实验、微认证,尽在华为云学院 华为云微认证:基于昇腾AI处理器的算子开发

    来自:百科

    查看更多 →

  • 昇腾AI软件栈逻辑架及功能介绍

    对于昇腾AI处理器,L2执行框架提供了神经网络的离线生成和执行能力,可以脱离深度学习框架(如Caffe、TensorFlow等)使得离线模型(Offline Model,OM)具有同样的能力(主要是推理能力)。框架管理器中包含了离线模型生成器(Offline Model Generator, OMG)、离线模型执行器(Offline

    来自:百科

    查看更多 →

  • 电梯内电瓶车检测

    时间:2021-01-06 10:15:15 视频监控 视频检测 人工智能 机器视觉 商品介绍 电瓶车起火事件时有发生,为保证楼宇公共安全,禁止电瓶车进入,该产品采用AI智能算法,利用卷积神经网络技术,通过深度学习实现电瓶车检测功能。 电梯内电瓶车检测商品介绍: 应用场景: 随着电瓶车

    来自:云商店

    查看更多 →

  • 人工智能学习入门

    AI技术领域课程--机器学习 AI技术领域课程--深度学习 AI技术领域课程--生成对抗网络 AI技术领域课程--强化学习 AI技术领域课程--图网络 AI技术领域课程--机器学习 AI技术领域课程--深度学习 AI技术领域课程--生成对抗网络 AI技术领域课程--强化学习 AI技术领域课程--图网络

    来自:专题

    查看更多 →

  • FPGA开发者云平台应用场景

    ,普通的云服务器难以满足性能需求,FPGA云服务器可以提供高性价比的视频解决方案,是视频类场景的理想选择 优势 高性能 高并行计算与片内 RAM 资源灵活匹配,适用于高性能视频图像处理场景 低时延 快速的外存访问技术,适用于超高清和 视频直播 等低时延场景 深度学习 机器学习中多层神经网

    来自:百科

    查看更多 →

  • BoostKit大数据使能套件:Spark机器学习算法,实现数据处理倍级性能提升

    术,包括优化的机器学习算法,从而实现Spark性能倍级提升。 内容大纲: 1. 大数据机器学习算法发展历程; 2. 机器学习算法优化的技术挑战; 3. 鲲鹏BoostKit机器学习算法原理创新; 4. 面向鲲鹏的算法亲和优化实践; 5. 鲲鹏BoostKit机器学习算法实践。 听众收益:

    来自:百科

    查看更多 →

  • 张量加速引擎(TBE)的三种应用场景

    了TBE算子的融合能力,为神经网络的优化开辟一条独特的路径。 张量加速引擎TBE的三种应用场景 1、一般情况下,通过深度学习框架中的标准算子实现的神经网络模型已经通过GPU或者其它类型神经网络芯片做过训练。如果将这个神经网络模型继续运行在昇腾AI处理器上时,希望尽量在不改变原始代

    来自:百科

    查看更多 →

共105条
看了本文的人还看了