AI&大数据

高精度,多场景,快响应,AI&大数据助力企业降本增效

 
 

    mxnet深度学习 内容精选 换一换
  • 深度学习

    华为云计算 云知识 深度学习 深度学习 时间:2020-11-23 16:30:56 深度学习( Deep Learning,DL)是机器学习的一种,机器学习是实现人工智能的必由之路。深度学习的概念源于人工神经网络的研究,包含多个隐藏层的多层感知器就是深度学习结构。深度学习通过组合低层特

    来自:百科

    查看更多 →

  • 深度学习概览

    华为云计算 云知识 深度学习概览 深度学习概览 时间:2020-12-17 10:03:07 HCIA-AI V3.0系列课程。本课程主要讲述深度学习相关的基本知识,其中包括深度学习的发展历程、深度学习神经 网络的部件、深度学习神经网络不同的类型以及深度学习工程中常见的问题。 目标学员

    来自:百科

    查看更多 →

  • mxnet深度学习 相关内容
  • 大V讲堂——双向深度学习

    大V讲堂——双向深度学习 大V讲堂——双向深度学习 时间:2020-12-09 14:52:19 以当今研究趋势由前馈学习重新转入双向对偶系统为出发点,从解码与编码、识别与重建、归纳与演绎、认知与求解等角度,我们将概括地介绍双向深度学习的历史、发展现状、应用场景,着重介绍双向深度学习理论、算法和应用示例。

    来自:百科

    查看更多 →

  • 从MindSpore手写数字识别学习深度学习

    从MindSpore手写数字识别学习深度学习 从MindSpore手写数字识别学习深度学习 时间:2020-11-23 16:08:48 深度学习作为机器学习分支之一,应用日益广泛。 语音识别 、自动 机器翻译 、即时视觉翻译、刷脸支付、人脸考勤……不知不觉,深度学习已经渗入到我们生活中的每个

    来自:百科

    查看更多 →

  • mxnet深度学习 更多内容
  • AI技术领域课程--深度学习

    华为云计算 云知识 AI技术领域课程--深度学习 AI技术领域课程--深度学习 时间:2020-12-15 15:23:12 深度学习是一种以人工神经网络为架构,对数据进行表征学习的算法。目前,在图像、语音识别、 自然语言处理 、强化学习等许多技术领域中,深度学习获得了广泛的应用,并

    来自:百科

    查看更多 →

  • 基于深度学习算法的语音识别

    华为云计算 云知识 基于深度学习算法的语音识别 基于深度学习算法的语音识别 时间:2020-12-01 09:50:45 利用新型的人工智能(深度学习)算法,结合清华大学开源语音数据集THCHS30进行语音识别的实战演练,让使用者在了解语音识别基本的原理与实战的同时,更好的了解人工智能的相关内容与应用。

    来自:百科

    查看更多 →

  • 大V讲堂——能耗高效的深度学习

    华为云计算 云知识 大V讲堂——能耗高效的深度学习 大V讲堂——能耗高效的深度学习 时间:2020-12-08 10:09:21 现在大多数的AI模型,尤其是计算视觉领域的AI模型,都是通过深度神经网络来进行构建的,从2015年开始,学术界已经开始注意到现有的神经网络模型都是需要

    来自:百科

    查看更多 →

  • 深度学习:IoT场景下的AI应用与开发

    华为云计算 云知识 深度学习:IoT场景下的AI应用与开发 深度学习:IoT场景下的AI应用与开发 时间:2020-12-08 10:34:34 本课程旨基于自动售卖机这一真实场景开发,融合了物联网与AI两大技术方向,向您展示AI与IoT融合的场景运用并解构开发流程;从 物联网平台

    来自:百科

    查看更多 →

  • 计算机视觉基础:深度学习和神经网络

    、自动机器学习等领域。 课程简介 本教程介绍了AI解决方案深度学习的发展前景及其面临的巨大挑战;深度神经网络的基本单元组成和产生表达能力的方式及复杂的训练过程。 课程目标 通过本课程的学习,使学员: 1、了解深度学习。 2、了解深度神经网络。 课程大纲 第1章 深度学习和神经网络

    来自:百科

    查看更多 →

  • ModelArts

    自研MoXing深度学习框架,提升算法开发效率和训练速度。 优化深度模型推理中GPU的利用率,加速云端在线推理。 可生成在Ascend芯片上运行的模型,实现高效端边推理。 灵活 支持多种主流开源框架(TensorFlowSpark_MLlibMXNetCaffePyTorch、XG

    来自:百科

    查看更多 →

  • 计算加速型P2vs图形加速增强型弹性云服务器介绍

    GPU卡,每台云服务器支持最大8张Tesla V100显卡。 支持NVIDIA CUDA 并行计算,支持常见的深度学习框架TensorflowCaffePyTorchMXNet等。 单实例最大网络带宽30Gb/s。 完整的基础能力:网络自定义,自由划分子网、设置网络访问策略;海量

    来自:百科

    查看更多 →

  • 计算加速型P2v型GPU加速型弹性云服务器规格及功能介绍

    支持NVIDIA CUDA 并行计算,支持常见的深度学习框架TensorflowCaffePyTorchMXNet等。 单精度能力15.7 TFLOPS,双精度能力7.8 TFLOPS。 支持NVIDIA Tensor Core能力,深度学习混合精度运算能力达到125 TFLOPS。

    来自:百科

    查看更多 →

  • ModelArts有什么优势

    自研MoXing深度学习框架,提升算法开发效率和训练速度。 优化深度模型推理中GPU的利用率,加速云端在线推理。 可生成在Ascend芯片上运行的模型,实现高效端边推理。 灵活 支持多种主流开源框架(TensorFlowSpark_MLlibMXNetCaffePyTorch、XGBoost-Sklearn)。

    来自:百科

    查看更多 →

  • 什么是AI开发

    通常是一个或多个机器学习深度学习模型,模型可以应用到新的数据中,得到预测、评价等结果。 业界主流的AI引擎TensorFlowSpark_MLlibMXNetCaffePyTorch、XGBoost-Sklearn等,大量的开发者基于主流AI引擎,开发并训练其业务所需的模型。

    来自:百科

    查看更多 →

  • 计算加速型P1型弹性云服务器规格及功能介绍

    算能力,可以使用P1型云服务器。常用的软件支持列表如下: TensorflowCaffePyTorchMXNet深度学习框架 RedShift for Autodesk 3dsMax、V-Ray for 3ds Max Agisoft PhotoScan MapD 弹性云服务器

    来自:百科

    查看更多 →

  • AI引擎

    华为云计算 云知识 AI引擎 AI引擎 时间:2020-12-24 14:36:32 AI引擎指ModelArts的开发环境、训练作业、模型推理(即模型管理和部署上线)支持的AI框架。主要包括业界主流的AI框架,TensorFlowMXNetCaffeSpark_Mllib、PyTo

    来自:百科

    查看更多 →

  • 推理加速型Pi1 Pi2服务器规格及功能介绍

    GPU内置硬件视频编解码引擎,能够同时进行35路高清视频解码与实时推理 常规支持软件列表 Pi1实例主要用于GPU推理计算场景,例如图片识别、语音识别、自然语言处理等场景。 常用的软件支持列表如下: TensorflowCaffePyTorchMXNet深度学习框架 推理加速型Pi2

    来自:百科

    查看更多 →

  • 2019年华为软件精英挑战赛AI开发平台动手实践

    本期动手体验的AI开发平台——华为云ModelArts,是面向AI开发者的一站式开发平台,提供海量数据预处理及半自动化标注、大规模分布式训练、自动化模型生成及端-边-云模型按需部署能力,帮助用户快速创建和部署模型,管理全周期AI工作流。通过此次实践,让大家学习和初步掌握线上AI开发基础和全流程。

    来自:百科

    查看更多 →

  • 什么是ModelArts

    可使用自动学习流程快速构建AI应用;面向AI初学者,不需关注模型开发,使用预置算法构建AI应用;面向AI工程师,提供多种开发环境,多种操作流程和模式,方便开发者编码扩展,快速构建模型及应用。 产品架构 ModelArts是一个一站式的开发平台,能够支撑开发者从数据到AI应用的全流

    来自:百科

    查看更多 →

  • 2019大学生ICT大赛加分赛人工智能测试题

    践指导,完成“使用MXNet实现Caltech 图像识别 应用”实践。 实践指导参考链接:https://github.com/huawei-clouds/modelarts-example/tree/master/Using%20MXNet%20to%20Train%20Caltech101

    来自:百科

    查看更多 →

  • 机器学习概览

    需要掌握人工智能技术,希望具备及其学习深度学习算法应用能力,希望掌握华为人工智能相关产品技术的工程师 课程目标 学完本课程后,您将能够:掌握学习算法定义与机器学习的流程;了解常用机器学习算法;了解超参数、梯度下降和交叉验证等概念。 课程大纲 1. 机器学习算法 2. 机器学习的分类 3. 机器学习的整体流程

    来自:百科

    查看更多 →

共105条
看了本文的人还看了