华为云11.11 AI&大数据分会场

高精度,多场景,快响应,AI&大数据助力企业降本增效

 
 

    halcon 深度学习算子 内容精选 换一换
  • 深度学习

    华为云计算 云知识 深度学习 深度学习 时间:2020-11-23 16:30:56 深度学习( Deep Learning,DL)是机器学习的一种,机器学习是实现人工智能的必由之路。深度学习的概念源于人工神经网络的研究,包含多个隐藏层的多层感知器就是深度学习结构。深度学习通过组合低层特

    来自:百科

    查看更多 →

  • 深度学习概览

    华为云计算 云知识 深度学习概览 深度学习概览 时间:2020-12-17 10:03:07 HCIA-AI V3.0系列课程。本课程主要讲述深度学习相关的基本知识,其中包括深度学习的发展历程、深度学习神经 网络的部件、深度学习神经网络不同的类型以及深度学习工程中常见的问题。 目标学员

    来自:百科

    查看更多 →

  • halcon 深度学习算子 相关内容
  • 大V讲堂——双向深度学习

    大V讲堂——双向深度学习 大V讲堂——双向深度学习 时间:2020-12-09 14:52:19 以当今研究趋势由前馈学习重新转入双向对偶系统为出发点,从解码与编码、识别与重建、归纳与演绎、认知与求解等角度,我们将概括地介绍双向深度学习的历史、发展现状、应用场景,着重介绍双向深度学习理论、算法和应用示例。

    来自:百科

    查看更多 →

  • 从MindSpore手写数字识别学习深度学习

    从MindSpore手写数字识别学习深度学习 从MindSpore手写数字识别学习深度学习 时间:2020-11-23 16:08:48 深度学习作为机器学习分支之一,应用日益广泛。 语音识别 、自动 机器翻译 、即时视觉翻译、刷脸支付、人脸考勤……不知不觉,深度学习已经渗入到我们生活中的每个

    来自:百科

    查看更多 →

  • halcon 深度学习算子 更多内容
  • AI技术领域课程--深度学习

    类的水平。本课程将介绍深度学习算法的知识。 课程简介 本课程将会探讨深度学习中的基础理论、算法、使用方法、技巧与不同的深度学习模型。 课程目标 通过本课程的学习,使学员: 1、掌握神经网络基础理论。 2、掌握深度学习中数据处理的基本方法。 3、掌握深度学习训练中调参、模型选择的基本方法。

    来自:百科

    查看更多 →

  • 大V讲堂——能耗高效的深度学习

    华为云计算 云知识 大V讲堂——能耗高效的深度学习 大V讲堂——能耗高效的深度学习 时间:2020-12-08 10:09:21 现在大多数的AI模型,尤其是计算视觉领域的AI模型,都是通过深度神经网络来进行构建的,从2015年开始,学术界已经开始注意到现有的神经网络模型都是需要

    来自:百科

    查看更多 →

  • 基于深度学习算法的语音识别

    华为云计算 云知识 基于深度学习算法的语音识别 基于深度学习算法的语音识别 时间:2020-12-01 09:50:45 利用新型的人工智能(深度学习)算法,结合清华大学开源语音数据集THCHS30进行语音识别的实战演练,让使用者在了解语音识别基本的原理与实战的同时,更好的了解人工智能的相关内容与应用。

    来自:百科

    查看更多 →

  • 深度学习:IoT场景下的AI应用与开发

    华为云计算 云知识 深度学习:IoT场景下的AI应用与开发 深度学习:IoT场景下的AI应用与开发 时间:2020-12-08 10:34:34 本课程旨基于自动售卖机这一真实场景开发,融合了物联网与AI两大技术方向,向您展示AI与IoT融合的场景运用并解构开发流程;从 物联网平台

    来自:百科

    查看更多 →

  • 计算机视觉基础:深度学习和神经网络

    、自动机器学习等领域。 课程简介 本教程介绍了AI解决方案深度学习的发展前景及其面临的巨大挑战;深度神经网络的基本单元组成和产生表达能力的方式及复杂的训练过程。 课程目标 通过本课程的学习,使学员: 1、了解深度学习。 2、了解深度神经网络。 课程大纲 第1章 深度学习和神经网络

    来自:百科

    查看更多 →

  • 自定义TBE算子入门,不妨从单算子开发开始

    自定义TBE算子入门,不妨从单算子开发开始 自定义TBE算子入门,不妨从单算子开发开始 时间:2021-01-08 11:18:54 人工智能 如何提高算子的计算性能?怎样修改现有算子的计算逻辑?昇腾AI软件栈不支持模型中的算子怎么办?别急别急,和我一起从单算子开发学习自定义算子开发吧!

    来自:百科

    查看更多 →

  • 为什么要自定义算子

    绝大多数情况下,由于昇腾AI软件栈支持绝大多数算子,开发者不需要进行自定义算子的开发,只需提供深度学习模型文件,通过离线模型生成器(OMG)转换就能够得到离线模型文件,从而进一步利用流程编排器(Matrix)生成具体的应用程序。既然如此,为什么还需要自定义算子呢?这是因为在模型转换过程中出现了算子不支持的情况,

    来自:百科

    查看更多 →

  • 张量加速引擎(TBE)的三种应用场景

    Engine)作为算子的兵工厂,为基于昇腾AI处理器运行的神经网络提供算子开发能力,用TBE语言编写的TBE算子来构建各种神经网络模型。同时,TBE对算子也提供了封装调用能力。在TBE中有一个优化过的神经网络TBE标准算子库,开发者可以直接利用标准算子库中的算子实现高性能的神经网

    来自:百科

    查看更多 →

  • 人工智能学习入门

    AI技术领域课程--机器学习 AI技术领域课程--深度学习 AI技术领域课程--生成对抗网络 AI技术领域课程--强化学习 AI技术领域课程--图网络 AI技术领域课程--机器学习 AI技术领域课程--深度学习 AI技术领域课程--生成对抗网络 AI技术领域课程--强化学习 AI技术领域课程--图网络

    来自:专题

    查看更多 →

  • 昇腾AI软件栈逻辑架及功能介绍

    算子加速库上层的运行管理器进行交互,同时运行管理器与L2执行框架层进行通信,提供标准算子加速库接口给L2执行框架层调用,让具体网络模型能找到优化后的、可执行的、可加速的算子进行功能上的最优实现。如果L1芯片使能层的标准算子加速库中无L2执行框架层所需要的算子,这时可以通过张量加

    来自:百科

    查看更多 →

  • 人工智能学习入门

    AI技术领域课程--机器学习 AI技术领域课程--深度学习 AI技术领域课程--生成对抗网络 AI技术领域课程--强化学习 AI技术领域课程--图网络 AI技术领域课程--机器学习 AI技术领域课程--深度学习 AI技术领域课程--生成对抗网络 AI技术领域课程--强化学习 AI技术领域课程--图网络

    来自:专题

    查看更多 →

  • 模型转换及其常见问题

    另外,离线模型转换过程中,80%左右的问题,集中在算子不支持。 1、新网络,其中算子未开发或发布; 2、原框架自定义算子,需要在新框架重新适配开发; 3、算子泛化不够,某些数据大小不支持。 在模型转换过程中出现了算子不支持的情况,例如昇腾AI软件栈不支持模型中的算子、开发者想修改现有算子中的计算逻辑、或者开发

    来自:百科

    查看更多 →

  • TBE及其优势特性

    14:08:49 人工智能 培训学习 昇腾计算 昇腾AI软件栈提供了TBE算子开发框架,开发者可以基于此框架使用Python语言开发自定义算子。那么,我们来了解一下什么是TBE。 TBE的全称为Tensor Boost Engine,即张量加速引擎,是一款华为自研的算子开发工具,用于开发能够

    来自:百科

    查看更多 →

  • 框架管理器离线模型生成介绍

    权重数据转化完成后,离线模型生成器还需要对算子的输出数据信息进行描述,确定输出张量形式。对于高层次复杂算子,如卷积算子和池化算子等,离线模型生成器可以直接通过TBE算子加速库提供的计算接口,并结合算子的输入张量信息和权重信息来获取算子的输出张量信息。如果是低层次简单算子,如加法算子等,则直接通过算子的输入张量信

    来自:百科

    查看更多 →

  • TBE基本概念之NPU

    14:11:43 人工智能 昇腾计算 TBE(Tensor Boost Engine)提供了昇腾AI处理器自定义算子开发能力,通过TBE提供的API和自定义算子编程开发界面可以完成相应神经网络算子的开发。 TBE的重要概念之一为NPU,即Neural-network Processing Unit,神经网络处理器。

    来自:百科

    查看更多 →

  • 查询已发布算子模板详情ShowPublicTemplateInfo

    华为云计算 云知识 查询已发布算子模板详情ShowPublicTemplateInfo 查询已发布算子模板详情ShowPublicTemplateInfo 时间:2023-09-06 10:21:02 API网关 云计算 接口说明 本接口用于按名称查询开放的算子详情。 URL GET https://dwr

    来自:百科

    查看更多 →

  • LiteAI四大"杀手锏",解锁物联网智能设备AI开发难关

    LiteAI采用算子融合、SIMD指令加速、循环分支细化及Cache分块等技术手段,优化AI网络算子性能,加速模型推理,充分发挥ARM CPU算力。 l LiteAI推理引擎纯C语言实现,无第三方依赖,极为适合IoT产品部署;采用代码化模型执行函数设计,仅编译链接有用算子,完全剔除其

    来自:百科

    查看更多 →

共105条
看了本文的人还看了