卷积神经网络 内容精选 换一换
  • 从MindSpore手写数字识别学习深度学习

    LeCun等人构建的卷积神经网络LeNet-5在手写数字识别问题中取得成功 ,被誉为卷积神经网络的“Hello Word”。LeNet-5以及在此之后产生的变体定义了现代卷积神经网络的基本结构,可谓入门级神经网络模型。本次实践使用的模型正是LeNet-5。 LeNet-5由输入层、卷积层、池化

    来自:百科

    查看更多 →

  • 什么是视频标签

    标签 视频 OCR 识别视频中出现的文字内容,包括字幕、弹幕、以及部分自然场景文字和艺术字等 产品优势 识别准确 采用标签排序学习算法与卷积神经网络算法,识别精度高,支持实时识别与检测 简单易用 提供符合 RES Tful的API访问接口,使用方便,用户的业务系统可快速集成 层次标签

    来自:百科

    查看更多 →

  • 卷积神经网络 相关内容
  • 图像处理理论、应用与实验

    别、图像检测、目标监测以及智能驾驶等。这一切本质都是对图像数据进行处理,本课程就图像处理理论及相应技术做了介绍,包括传统特征提取算法和卷积神经网络,学习时注意两者的区别。 目标学员 1、希望成为企业AI工程师的人员 2、希望获得HCIP-AI EI Developer V2.0认证的人员

    来自:百科

    查看更多 →

  • 深度学习

    音、文本等数据。 深度学习的典型模型:卷积神经网络模型、深度信任网络模型、堆栈自编码网络模型。 深度学习的应用:计算机视觉、 语音识别 自然语言处理 等其他领域。 华为云 面向未来的智能世界,数字化是企业发展的必由之路。数字化成功的关键是以云原生的思维践行云原生,全数字化、全云化、AI驱动,一切皆服务。

    来自:百科

    查看更多 →

  • 卷积神经网络 更多内容
  • AI技术领域课程--深度学习

    第4章 正则化 第5章 优化器 第6章 初始化 第7章 参数调节 第8章 深度信念网络 第9章 卷积神经网络 第10章 循环神经网络 华为云 面向未来的智能世界,数字化是企业发展的必由之路。数字化成功的关键是以云原生的思维践行云原生,全数字化、全云化、AI驱动,一切皆服务。 华为云将持

    来自:百科

    查看更多 →

  • 视频审核VCM是什么

    风险与释放审核人力,提升效率。 产品优势: 1. 多模态审核:支持同时对视频字幕、声音与画面多维度智能核查; 2. 准确率高:采用深度卷积神经网络与海量训练数据,模型识别准确率高; 3. 识别速度快:实时对视频进行审核,快速识别视频违规项。 华为云 面向未来的智能世界,数字化是企

    来自:百科

    查看更多 →

  • 框架管理器离线模型生成介绍

    华为云计算 云知识 框架管理器离线模型生成介绍 框架管理器离线模型生成介绍 时间:2020-08-19 17:00:58 离线模型生成以卷积神经网络为例,在深度学习框架下构造好相应的网络模型,并且训练好原始数据,再通过离线模型生成器进行算子调度优化、权重数据重排和压缩、内存优化等,

    来自:百科

    查看更多 →

  • 数字视觉预处理机制介绍

    成图像的裁剪与缩放。 上图展示了一种典型改变图像尺寸的裁剪和补零操作,VPC在原图像中取出的待处理图像部分,再将这部分进行补零操作,在卷积神经网络计算过程中保留边缘的特征信息。补零操作需要用到上、下、左、右四个填充尺寸,在补零区域中进行图像边缘扩充,最后得到可以直接计算的补零后图像。

    来自:百科

    查看更多 →

  • 人工智能学习入门

    使用MindSpore训练手写数字识别模型 基于昇腾AI处理器的算子开发 电子相册智慧整理 基于卷积神经网络实现景区精准识别场景 使用MindSpore训练手写数字识别模型 基于昇腾AI处理器的算子开发 电子相册智慧整理 基于卷积神经网络实现景区精准识别场景 HCIA-AI HCIA-AI 华为认证人工智能工程师

    来自:专题

    查看更多 →

  • 打手机智能识别

    打手机智能检测算法是基于人工智能技术领域中的深度学习技术,结合大数据,使用大量的人员打手机图片数据采用监督学习的方式进行智能检测训练。算法采用深度卷积神经网络提取数据中关键特征,忽略图片数据中的不相关信息,并结合业务逻辑进行推理判断。 将训练完成后的算法加载到AI摄像机内部,利用摄像机内部A

    来自:云商店

    查看更多 →

  • 神经网络基础

    华为云计算 云知识 神经网络基础 神经网络基础 时间:2020-12-07 16:53:14 HCIP-AI EI Developer V2.0系列课程。神经网络是深度学习的重要基础,理解神经网络的基本原理、优化目标与实现方法是学习后面内容的关键,这也是本课程的重点所在。 目标学员

    来自:百科

    查看更多 →

  • 华为云云上先锋AI挑战赛

    神将教你从0到1通关 图像识别 !!帮你实现当下热门的垃圾分类、自动驾驶技术。 【赛事简介】 本次比赛为AI主题赛中的挑战赛。选手可以使用卷积神经网络对生活中的街道场景进行识别。选手可重复提交代码,直到代码完美为止。 【参赛对象】 对AI感兴趣且年满18岁的开发者均可报名参加。 【报名须知】

    来自:百科

    查看更多 →

  • 视频内容分析有什么功能

    取违规或者关键信息,包括踢、扔、抛物体等。 视频质量分析VQA 视频质量分析(Video Quality Analysis)是通过深度卷积神经网络算法识别视频画面质量,将视频画面的质量进行归类,从而过滤出清晰的高质量视频。 视频OCR:视频OCR(Video Optical Character

    来自:百科

    查看更多 →

  • 视频内容分析 VCR是什么

    基于对视频的前后帧信息、光流运动信息分析、场景内容信息识别等分析,检测和识别视频动作 优势 多模态识别 综合图像、光流、声音等信息,识别动作更准确 识别准确 采用3D卷积神经网络算法,动作识别准确度高 对复杂场景鲁棒性强 对不同天气条件、不同的摄像头角度等复杂场景的视频动作识别具有良好的鲁棒性 建议搭配使用: 对象存储服务 OBS

    来自:百科

    查看更多 →

  • 大V讲堂——神经网络结构搜索

    云知识 大V讲堂——神经网络结构搜索 大V讲堂——神经网络结构搜索 时间:2020-12-14 10:07:11 神经网络结构搜索是当前深度学习最热门的话题之一,已经成为了一大研究潮流。本课程将介绍神经网络结构搜索的理论基础、应用和发展现状。 课程简介 神经网络结构搜索(NAS)

    来自:百科

    查看更多 →

  • 电梯内电瓶车检测

    视频监控 视频检测 人工智能 机器视觉 商品介绍 电瓶车起火事件时有发生,为保证楼宇公共安全,禁止电瓶车进入,该产品采用AI智能算法,利用卷积神经网络技术,通过深度学习实现电瓶车检测功能。 电梯内电瓶车检测商品介绍: 应用场景: 随着电瓶车越来越受欢迎,电瓶车起火事件也时有发生。特别

    来自:云商店

    查看更多 →

  • TBE基本概念之算子类型及名称

    Engine)提供了昇腾AI处理器自定义算子开发能力,通过TBE提供的API和自定义算子编程开发界面可以完成相应神经网络算子的开发。 算子类型及名称为TBE的重要概念: 算子类型(Type)即算子的type,代表算子的类型,例如卷积算子的类型为Convolution,在一个网络中同一类型的算子可能存在多个。 算

    来自:百科

    查看更多 →

  • 昇腾AI软件栈神经网络软件架构

    流程编排器负责完成神经网络在昇腾AI处理器上的落地与实现,统筹了整个神经网络生效的过程。 数字视觉预处理模块在输入之前进行一次数据处理和修饰,来满足计算的格式需求。 张量加速引擎作为神经网络算子兵工厂,为神经网络模型源源不断提供功能强大的计算算子。 框架管理器将原始神经网络模型转换成昇

    来自:百科

    查看更多 →

  • 自定义TBE算子入门,不妨从单算子开发开始

    一个算子。于我们而言,我们所开发的算子是网络模型中涉及到的计算函数。在Caffe中,算子对应层中的计算逻辑,例如:卷积层(ConvolutionLayer)中的卷积算法,是一个算子;全连接层(Fully-connectedLayer,FClayer)中的权值求和过程,也是一个算子。

    来自:百科

    查看更多 →

  • 计算机视觉基础:深度学习和神经网络

    本教程介绍了AI解决方案深度学习的发展前景及其面临的巨大挑战;深度神经网络的基本单元组成和产生表达能力的方式及复杂的训练过程。 课程目标 通过本课程的学习,使学员: 1、了解深度学习。 2、了解深度神经网络。 课程大纲 第1章 深度学习和神经网络 华为云 面向未来的智能世界,数字化是企业发展的必

    来自:百科

    查看更多 →

  • 实战篇:神经网络赋予机器识图的能力

    华为云计算 云知识 实战篇:神经网络赋予机器识图的能力 实战篇:神经网络赋予机器识图的能力 时间:2020-12-09 09:28:38 深度神经网络让机器拥有了视觉的能力,实战派带你探索深度学习! 课程简介 本课程主要内容包括:深度学习平台介绍、神经网络构建多分类模型、经典入门示例详解:构建手写数字识别模型。

    来自:百科

    查看更多 →

共105条
看了本文的人还看了