神经网络拓扑结构图 内容精选 换一换
  • 拓扑

    华为云计算 云知识 拓扑 拓扑 时间:2020-09-18 11:29:12 拓扑是对应用间调用关系和依赖关系的可视化展示(拓扑图)。拓扑图主要是由圆圈、箭头连线、资源组成。每个圆圈代表一个服务,圆圈上每个分区代表一个实例。每个圆圈中的分数表示活跃的实例/总实例数。分数下的内容分

    来自:百科

    查看更多 →

  • 神经网络基础

    华为云计算 云知识 神经网络基础 神经网络基础 时间:2020-12-07 16:53:14 HCIP-AI EI Developer V2.0系列课程。神经网络是深度学习的重要基础,理解神经网络的基本原理、优化目标与实现方法是学习后面内容的关键,这也是本课程的重点所在。 目标学员

    来自:百科

    查看更多 →

  • 神经网络拓扑结构图 相关内容
  • 大V讲堂——神经网络结构搜索

    云知识 大V讲堂——神经网络结构搜索 大V讲堂——神经网络结构搜索 时间:2020-12-14 10:07:11 神经网络结构搜索是当前深度学习最热门的话题之一,已经成为了一大研究潮流。本课程将介绍神经网络结构搜索的理论基础、应用和发展现状。 课程简介 神经网络结构搜索(NAS)

    来自:百科

    查看更多 →

  • 昇腾AI软件栈神经网络软件架构

    流程编排器负责完成神经网络在昇腾AI处理器上的落地与实现,统筹了整个神经网络生效的过程。 数字视觉预处理模块在输入之前进行一次数据处理和修饰,来满足计算的格式需求。 张量加速引擎作为神经网络算子兵工厂,为神经网络模型源源不断提供功能强大的计算算子。 框架管理器将原始神经网络模型转换成昇

    来自:百科

    查看更多 →

  • 神经网络拓扑结构图 更多内容
  • 计算机视觉基础:深度学习和神经网络

    本教程介绍了AI解决方案深度学习的发展前景及其面临的巨大挑战;深度神经网络的基本单元组成和产生表达能力的方式及复杂的训练过程。 课程目标 通过本课程的学习,使学员: 1、了解深度学习。 2、了解深度神经网络。 课程大纲 第1章 深度学习和神经网络 华为云 面向未来的智能世界,数字化是企业发展的必

    来自:百科

    查看更多 →

  • 实战篇:神经网络赋予机器识图的能力

    华为云计算 云知识 实战篇:神经网络赋予机器识图的能力 实战篇:神经网络赋予机器识图的能力 时间:2020-12-09 09:28:38 深度神经网络让机器拥有了视觉的能力,实战派带你探索深度学习! 课程简介 本课程主要内容包括:深度学习平台介绍、神经网络构建多分类模型、经典入门示例详解:构建手写数字识别模型。

    来自:百科

    查看更多 →

  • Flume是什么

    输,Sink则负责数据向下一端的发送。 Flume也可以配置成多个Source、Channel、Sink,如图2所示: 图2 Flume结构图 Flume的可靠性基于Agent间事务的交换,下一个Agent down掉,Channel可以持久化数据,Agent恢复后再传输。Flume的可用性则基于内建的Load

    来自:百科

    查看更多 →

  • GaussDB数据库系统_数据库逻辑结构图_高斯数据库数据库系统-华为云

    GaussDB 数据库逻辑结构图 GaussDB 数据库逻辑结构图 GaussDB数据库 ,又称为 云数据库 GaussDB,华为自主创新研发的分布式关系型数据库,具有高性能、高可用、高安全、低成本的特点,企业核心数据上云信赖之选。关于GaussDB数据库知多少呢? GaussDB数据

    来自:专题

    查看更多 →

  • GaussDB集群规模_gaussdb集中式_高斯数据库集群规模_华为云

    。 因此,云数据库GaussDB集群可以理解为,GaussDB数据库部署在多台服务器上。 GaussDB集中式(主备版_2.x版本)逻辑结构图 GaussDB的数据库节点负责存储数据,其存储介质也是磁盘,本节主要从逻辑视角介绍数据库节点都有哪些对象,以及这些对象之间的关系。 说明

    来自:专题

    查看更多 →

  • 张量加速引擎(TBE)的三种应用场景

    Engine)作为算子的兵工厂,为基于昇腾AI处理器运行的神经网络提供算子开发能力,用TBE语言编写的TBE算子来构建各种神经网络模型。同时,TBE对算子也提供了封装调用能力。在TBE中有一个优化过的神经网络TBE标准算子库,开发者可以直接利用标准算子库中的算子实现高性能的神经网络计算。除此之外,TBE也提供

    来自:百科

    查看更多 →

  • AI技术领域课程--深度学习

    型。 课程目标 通过本课程的学习,使学员: 1、掌握神经网络基础理论。 2、掌握深度学习中数据处理的基本方法。 3、掌握深度学习训练中调参、模型选择的基本方法。 4、掌握主流深度学习模型的技术特点。 课程大纲 第1章 神经网络基础概念 第2章 数据集处理 第3章 网络构建 第4章

    来自:百科

    查看更多 →

  • 昇腾AI软件栈逻辑架及功能介绍

    昇腾AI软件栈逻辑架及功能介绍 昇腾AI软件栈逻辑架及功能介绍 时间:2020-08-18 17:12:46 昇腾AI软件栈可以分为神经网络相关软件模块、工具链以及其它软件模块。 1、神经网络软件主要包含了流程编排器(Matrix),框架管理器(Framework),运行管理器(Runtime)、数字视觉预处理模块(Digital

    来自:百科

    查看更多 →

  • 昇腾AI软件栈框架管理器功能框架介绍

    时间:2020-08-19 10:07:38 框架管理器协同TBE为神经网络生成可执行的离线模型。在神经网络执行之前,框架管理器与昇腾AI处理器紧密结合生成硬件匹配的高性能离线模型,并拉通了流程编排器和运行管理器使得离线模型和昇腾AI处理器进行深度融合。在神经网络执行时,框架管理器联合了流程编排器、运行管

    来自:百科

    查看更多 →

  • 深度学习

    DL)是机器学习的一种,机器学习是实现人工智能的必由之路。深度学习的概念源于人工神经网络的研究,包含多个隐藏层的多层感知器就是深度学习结构。深度学习通过组合低层特征形成更抽象的高层代表属性类别或特征,发现数据分布式特征表示。研究深入学习的动机是建立模拟大脑分析学习的神经网络,它模拟大脑的机制来解释说明数据,如图像、声音、文本等数据。

    来自:百科

    查看更多 →

  • 从MindSpore手写数字识别学习深度学习

    次训练我们使用深度神经网络作为训练模型,即深度学习。深度学习通过人工神经网络来提取特征,不同层的输出常被视为神经网络提取出的不同尺度的特征,上一层的输出作为下一层的输入,层层连接构成深度神经网络。 1994年,Yann LeCun发布了结合反向传播的卷积神经网络 LeNet, 其

    来自:百科

    查看更多 →

  • TBE基本概念之NPU

    Engine)提供了昇腾AI处理器自定义算子开发能力,通过TBE提供的API和自定义算子编程开发界面可以完成相应神经网络算子的开发。 TBE的重要概念之一为NPU,即Neural-network Processing Unit,神经网络处理器。 在维基百科中,NPU这个词条被直接指向了“人工智能加速器”,释义是这样的:

    来自:百科

    查看更多 →

  • 深度学习概览

    网络的部件、深度学习神经网络不同的类型以及深度学习工程中常见的问题。 目标学员 需要掌握人工智能技术,希望具备及其学习和深度学习算法应用能力,希望掌握华为人工智能相关产品技术的工程师 课程目标 学完本课程后,您将能够:描述神经网络的定义与发展;熟悉深度学习神经网络的重要“部件”;熟

    来自:百科

    查看更多 →

  • 昇腾AI软件栈流程编排器(Matrix)功能介绍

    算引擎由开发者进行自定义来完成所需要的具体功能。 通过流程编排器的统一调用,整个深度神经网络应用一般包括四个引擎:数据引擎,预处理引擎,模型推理引擎以及后处理引擎。 1、数据引擎主要准备神经网络需要的数据集(如MNIST数据集)和进行相应数据的处理(如图片过滤等),作为后续计算引擎的数据来源。

    来自:百科

    查看更多 →

  • 大V讲堂——能耗高效的深度学习

    时间:2020-12-08 10:09:21 现在大多数的AI模型,尤其是计算视觉领域的AI模型,都是通过深度神经网络来进行构建的,从2015年开始,学术界已经开始注意到现有的神经网络模型都是需要较高算力和能好的。并且有大量的研究论文集中于如何将这些AI模型从云上部署到端侧,为AI模型创造更多的应用场景和产业价值。

    来自:百科

    查看更多 →

  • 张量加速引擎是什么?

    时间:2020-08-19 09:27:09 神经网络构造中,算子组成了不同应用功能的网络结构。而张量加速引擎(Tensor Boost Engine)作为算子的兵工厂,为基于昇腾AI处理器运行的神经网络提供算子开发能力,用TBE语言编写的TBE算子来构建各种神经网络模型。同时,TBE对算子也提供

    来自:百科

    查看更多 →

  • 数字视觉预处理6个模块功能及架构介绍

    -JPEGD模块对JPEG格式的图片进行解码,将原始输入的JPEG图片转换成YUV数据,对神经网络的推理输入数据进行预处理。 -JPEG图片处理完成后,需要用JPEGE编码模块对处理后的数据进行JPEG格式还原,用于神经网络的推理输出数据的后处理。 -当输入图片格式为PNG时,需要调用PNGD解码

    来自:百科

    查看更多 →

共105条
看了本文的人还看了