tensorflow预训练模型 内容精选 换一换
  • 大V讲堂——预训练语言模型

    云知识 大V讲堂——训练语言模型 大V讲堂——训练语言模型 时间:2020-12-15 16:31:00 在 自然语言处理 (NLP)领域中,使用语言模型训练方法在多项NLP任务上都获得了不错的提升,广泛受到了各界的关注。本课程将简单介绍一下训练的思想,几个代表性模型和它们之间的关系。

    来自:百科

    查看更多 →

  • ModelArts模型训练_模型训练简介_如何训练模型

    调试分布式训练。 了解更多 收起 展开 模型训练加速 收起 展开 针对AI训练场景中大模型Checkpoint保存和加载带来的I/O挑战,华为云提供了基于对象存储服务 OBS +高性能文件服务SFS Turbo的AI云存储解决方案。 了解更多 模型训练最佳实践示例 模型训练入门级使用教程,小白也能快速上手。

    来自:专题

    查看更多 →

  • tensorflow预训练模型 相关内容
  • ModelArts模型训练_创建训练作业_如何创建训练作业

    ModelArts训练管理 ModelArts训练管理 ModelArts训练管理模块用于创建训练作业、查看训练情况以及管理训练版本。在训练模块的统一管理下,方便用户试验算法、数据和超参数的各种组合,便于追踪最佳的模型与输入配置,您可以通过不同版本间的评估指标比较,确定最佳训练作业。 M

    来自:专题

    查看更多 →

  • 使用MindSpore开发训练模型识别手写数字

    使用MindSpore开发训练模型识别手写数字 使用MindSpore开发训练模型识别手写数字 时间:2020-12-01 14:59:14 本实验指导用户在短时间内,了解和熟悉使用MindSpore进行模型开发和训练的基本流程,并利用ModelArts训练管理服务完成一次训练任务。 实验目标与基本要求

    来自:百科

    查看更多 →

  • tensorflow预训练模型 更多内容
  • 模型训练与平台部署(Mindspore-TF)

    华为云计算 云知识 模型训练与平台部署(Mindspore-TF) 模型训练与平台部署(Mindspore-TF) 时间:2020-12-08 16:37:45 本课程主要介绍如何让TensorFlow脚本运行在昇腾910处理器上,并进行精度、性能等方面的调优。 目标学员 AI领域的开发者

    来自:百科

    查看更多 →

  • 网络智能体NAIE应用场景

    练 NAIE训练平台预置多种集成通信模型服务,Zero编码,让开发者无须AI经验也可快速完成网络领域模型的开发和训练 向导式开发提升模型开发效率,开放协同支持多框架 从数据准备,特征提取,模型训练,到上线发布,提供端到端的IDE向导式开发环境,提升模型开发效率;支持各种主流算法

    来自:百科

    查看更多 →

  • 基于ModelArts实现人车检测模型训练和部署

    云知识 基于ModelArts实现人车检测模型训练和部署 基于ModelArts实现人车检测模型训练和部署 时间:2020-12-02 11:21:12 本实验将指导用户使用华为ModelArts预置算法构建一个人车检测模型AI应用。人车检测模型可以应用于自动驾驶场景,检测道路上人和车的位置。

    来自:百科

    查看更多 →

  • AI引擎

    华为云计算 云知识 AI引擎 AI引擎 时间:2020-12-24 14:36:32 AI引擎指ModelArts的开发环境、训练作业、模型推理(即模型管理和部署上线)支持的AI框架。主要包括业界主流的AI框架,TensorFlowMXNetCaffeSpark_Mllib、PyTo

    来自:百科

    查看更多 →

  • ModelArts AI Gallery_市场_资产集市

    s镜像分享发布至AI Gallery中,共享给其他用户使用。 资产集市 > 模型:共享了ModelArts模型 HiLens 技能。 AI Gallery的模型模块包括ModelArts模型和HiLens技能,支持发布和订阅共享的模型。在AI Gallery的“模型”中,可以查找您

    来自:专题

    查看更多 →

  • ModelArts模型训练_超参搜索简介_超参搜索算法

    1') 训练作业的“/cache”目录是否安全? ModelArts训练作业的程序运行在容器中,容器挂载的目录地址是唯一的,只有运行时的容器能访问到。因此训练作业的“/cache”是安全的。 训练环境中不同规格资源“/cache”目录的大小 在创建训练作业时可以根据训练作业的大小

    来自:专题

    查看更多 →

  • ModelArts

    ModelArts是面向AI开发者的一站式开发平台,提供海量数据预处理及半自动化标注、大规模分布式训练、自动化模型生成及端-边-云模型按需部署能力,帮助用户快速创建和部署模型,管理全周期AI工作流。 产品优势 一站式 开“箱”即用,涵盖AI开发全流程,包含数据处理、模型开发、训练、管理、部署功能,可灵活使用其中一个或多个功能。

    来自:百科

    查看更多 →

  • ModelArts分布式训练_分布式训练介绍_分布式调测

    介绍三种使用训练作业来启动PyTorch DDP训练的方法及对应代码示例。 了解详情 示例:创建DDP分布式训练PyTorch+NPU) 介绍了使用训练作业的自定义镜像+自定义启动命令来启动PyTorch DDP on Ascend加速卡训练。 了解详情 训练作业常见问题 创建训练作业常见问题

    来自:专题

    查看更多 →

  • ModelArts自定义镜像_自定义镜像简介_如何使用自定义镜像

    了解详情 使用自定义镜像训练作业 如果您已经在本地完成模型开发或训练脚本的开发,且您使用的AI引擎是ModelArts不支持的框架。您可以制作自定义镜像,并上传至SWR服务。您可以在ModelArts使用此自定义镜像创建训练作业,使用ModelArts提供的资源训练模型。 了解详情 使用自定义镜像创建AI应用

    来自:专题

    查看更多 →

  • ModelArts有什么优势

    ModelArts是面向开发者的一站式AI开发平台,为机器学习与深度学习提供海量数据预处理及半自动化标注、大规模分布式Training、自动化模型生成,及端-边-云模型按需部署能力,帮助用户快速创建和部署模型,管理全周期AI工作流。 一站式 开“箱”即用,涵盖AI开发全流程,包含数据处理、模型开发、训练、管理、

    来自:百科

    查看更多 →

  • ModelArts是什么_AI开发平台_ModelArts功能

    ModelArts是面向AI开发者的一站式开发平台,提供海量数据预处理及半自动化标注、大规模分布式训练、自动化模型生成及端-边-云模型按需部署能力,帮助用户快速创建和部署模型,管理全周期AI工作流。 “一站式”是指AI开发的各个环节,包括数据处理、算法开发、模型训练模型部署都可以在Mo

    来自:专题

    查看更多 →

  • 什么是AI开发

    和业务规律,为商业目的提供决策参考。训练模型的结果通常是一个或多个机器学习或深度学习模型模型可以应用到新的数据中,得到预测、评价等结果。 业界主流的AI引擎TensorFlowSpark_MLlibMXNetCaffePyTorch、XGBoost-Sklearn等,

    来自:百科

    查看更多 →

  • 什么是ModelArts

    ModelArts是面向AI开发者的一站式开发平台,提供海量数据预处理及半自动化标注、大规模分布式训练、自动化模型生成及端-边-云模型按需部署能力,帮助用户快速创建和部署模型,管理全周期AI工作流。 “一站式”是指AI开发的各个环节,包括数据处理、算法开发、模型训练模型部署都可以在Mo

    来自:百科

    查看更多 →

  • AI开发平台ModelArts

    华为云计算 云知识 AI开发平台ModelArts AI开发平台ModelArts 时间:2020-12-08 09:26:40 AI开发平台 ModelArts是面向AI开发者的一站式开发平台,提供海量数据预处理及半自动化标注、大规模分布式训练、自动化模型生成及端-边-云模型按需部署能力

    来自:百科

    查看更多 →

  • ModelArts推理部署_模型_AI应用来源-华为云

    ModelArts支持本地准备模型包,编写模型配置文件和模型推理代码,将准备好的模型包上传至对象存储服务OBS,从OBS导入模型创建为AI应用。 制作模型包,则需要符合一定的模型包规范。模型包里面必需包含“model”文件夹,“model”文件夹下面放置模型文件,模型配置文件,模型推理代码文件。

    来自:专题

    查看更多 →

  • 基于深度学习算法的语音识别

    通过本实验将了解如何使用Keras和Tensorflow构建DFCNN的 语音识别 神经网络,并且熟悉整个处理流程,包括数据预处理、模型训练模型保存和模型预测等环节。 实验摘要 实验准备:登录华为云账号 1.OBS准备 2.ModelArts应用 3.开始语音识别操作 4.开始语言模型操作 温馨提示:

    来自:百科

    查看更多 →

  • 知识图谱与大模型结合方法概述

    LLM和KG的融合路线,可分为以下类型: 第一种融合路线是KG增强LLM,可在LLM训练、推理阶段引入KG。以KG增强LLM训练为例,一个代表工作是百度的ERNIE 3.0将图谱三元组转换成一段token文本作为输入,并遮盖其实体或者关系来进行训练,使模型训练阶段直接学习KG蕴含的知识。 第二种融合路线是L

    来自:百科

    查看更多 →

共105条
看了本文的人还看了