tensorflow基础教程 内容精选 换一换
  • AI引擎

    华为云计算 云知识 AI引擎 AI引擎 时间:2020-12-24 14:36:32 AI引擎指ModelArts的开发环境、训练作业、模型推理(即模型管理和部署上线)支持的AI框架。主要包括业界主流的AI框架,TensorFlowMXNetCaffeSpark_Mllib、PyTo

    来自:百科

    查看更多 →

  • ModelArts AI Gallery_市场_资产集市

    AI Gallery AI Gallery AI Gallery算法、镜像、模型、Workflow等AI数字资产的共享,为高校科研机构、AI应用开发商、解决方案集成商、企业级/个人开发者等群体,提供安全、开放的共享及交易环节,加速AI资产的开发与落地,保障AI开发生态链上各参与方高效地实现各自的商业价值。

    来自:专题

    查看更多 →

  • tensorflow基础教程 相关内容
  • 业界主流AI开发框架

    华为云计算 云知识 业界主流AI开发框架 业界主流AI开发框架 时间:2020-12-10 09:10:26 HCIA-AI V3.0系列课程。本课程将主要讲述为什么是深度学习框架、深度学习框架的优势并介绍二种深度学习 框架,包括PytorchTensorFlow。接下来会结合代码详细讲解TensorFlow

    来自:百科

    查看更多 →

  • AI基础课程--常用框架工具

    Python机器学习库Scikit-learn 第6章 Python图像处理库Scikit-image 第7章 TensorFlow简介 第8章 Keras简介 第9章 pytorch简介 华为云 面向未来的智能世界,数字化是企业发展的必由之路。数字化成功的关键是以云原生的思维践行

    来自:百科

    查看更多 →

  • tensorflow基础教程 更多内容
  • 推理加速型Pi1 Pi2服务器规格及功能介绍

    GPU内置硬件视频编解码引擎,能够同时进行35路高清视频解码与实时推理 常规支持软件列表 Pi1实例主要用于GPU推理计算场景,例如图片识别、 语音识别 自然语言处理 等场景。 常用的软件支持列表如下: TensorflowCaffePyTorchMXNet等深度学习框架 推理加速型Pi2

    来自:百科

    查看更多 →

  • ModelArts自定义镜像_自定义镜像简介_如何使用自定义镜像

    了解更多 从0到1制作自定义镜像并用于训练 Pytorch+CPU/GPU 介绍如何从0到1制作镜像,并使用该镜像在ModelArts平台上进行训练。镜像中使用的AI引擎Pytorch,训练使用的资源是CPU或GPU。 Tensorflow+GPU 介绍如何从0到1制作镜像,并使用

    来自:专题

    查看更多 →

  • 计算加速型P2vs图形加速增强型弹性云服务器介绍

    GPU卡,每台云服务器支持最大8张Tesla V100显卡。 支持NVIDIA CUDA 并行计算,支持常见的深度学习框架TensorflowCaffePyTorchMXNet等。 单实例最大网络带宽30Gb/s。 完整的基础能力:网络自定义,自由划分子网、设置网络访问策略;海量存储,

    来自:百科

    查看更多 →

  • ModelArts分布式训练_分布式训练介绍_分布式调测

    ModelArts提供的调测代码是以Pytorch为例编写的,不同的AI框架之间,整体流程是完全相同的,只需要修改个别的参数即可。 不同类型分布式训练介绍 单机多卡数据并行-DataParallel(DP) 介绍基于Pytorch引擎的单机多卡数据并行分布式训练原理和代码改造点。MindSpore引擎的分布式训练参见MindSpore官网。

    来自:专题

    查看更多 →

  • 模型转换及其常见问题

    14:00:38 人工智能 培训学习 昇腾计算 模型转换,即将开源框架的网络模型(如CaffeTensorFlow等),通过ATC(Ascend Tensor Compiler)模型转换工具,将其转换成昇腾AI处理器支持的离线模型,模型转换过程中可以实现算子调度的优化、权值数据重排、内

    来自:百科

    查看更多 →

  • 计算加速型P2v型GPU加速型弹性云服务器规格及功能介绍

    GPU卡,每台云服务器支持最大8张Tesla V100显卡。 支持NVIDIA CUDA 并行计算,支持常见的深度学习框架TensorflowCaffePyTorchMXNet等。 单精度能力15.7 TFLOPS,双精度能力7.8 TFLOPS。 支持NVIDIA Tensor Co

    来自:百科

    查看更多 →

  • 模型训练与平台部署(Mindspore-TF)

    模型训练与平台部署(Mindspore-TF) 时间:2020-12-08 16:37:45 本课程主要介绍如何让TensorFlow脚本运行在昇腾910处理器上,并进行精度、性能等方面的调优。 目标学员 AI领域的开发者 课程目标 通过对教材的解读,使学员能够结合教材+实践,迁移自己的训练脚本到昇腾平台上进行训练。

    来自:百科

    查看更多 →

  • ModelArts有什么优势

    灵活 支持多种主流开源框架(TensorFlowSpark_MLlibMXNetCaffePyTorch、XGBoost-Sklearn)。 支持主流GPU和自研Ascend芯片。 支持专属资源独享使用。 支持自定义镜像满足自定义框架及算子需求。 AI开发平台ModelArts

    来自:百科

    查看更多 →

  • AI开发平台ModelArts

    华为云计算 云知识 AI开发平台ModelArts AI开发平台ModelArts 时间:2020-12-08 09:26:40 AI开发平台 ModelArts是面向AI开发者的一站式开发平台,提供海量数据预处理及半自动化标注、大规模分布式训练、自动化模型生成及端-边-云模型按

    来自:百科

    查看更多 →

  • ModelArts

    支持多种主流开源框架(TensorFlowSpark_MLlibMXNetCaffePyTorch、XGBoost-Sklearn、MindSpore)。 支持主流GPU和自研Ascend芯片。 支持专属资源独享使用。 支持自定义镜像满足自定义框架及算子需求。 AI开发平台ModelArts

    来自:百科

    查看更多 →

  • 华为云CCE_华为云容器引擎CCE_容器高性能调度

    ta和AI场景下,通用、可扩展、高性能、稳定的原生批量计算平台,方便AI、大数据、基因等诸多行业通用计算框架接入,提供高性能任务调度引擎,高性能异构芯片管理,高性能任务运行管理等能力。 了解详情 云容器引擎-入门指引 本文旨在帮助您了解云容器引擎(Cloud Container

    来自:专题

    查看更多 →

  • ModelArts推理部署_OBS导入_模型包规范-华为云

    模型包规范 ModelArts在AI应用管理创建AI应用时,如果是从 OBS 中导入元模型,则需要符合一定的模型包规范。模型包规范适用于单模型场景,若是多模型场景(例如含有多个模型文件)推荐使用自定义镜像方式。 ModelArts在AI应用管理创建AI应用时,如果是从OBS中导入元模

    来自:专题

    查看更多 →

  • 基于深度学习算法的语音识别

    了解语音识别基本的原理与实战的同时,更好的了解人工智能的相关内容与应用。 实验目标与基本要求 通过本实验将了解如何使用Keras和Tensorflow构建DFCNN的语音识别神经网络,并且熟悉整个处理流程,包括数据预处理、模型训练、模型保存和模型预测等环节。 实验摘要 实验准备:登录华为云账号

    来自:百科

    查看更多 →

  • 使用昇腾弹性云服务器实现黑白图像上色应用(C++)

    使用昇腾 弹性云服务器 实现黑白图像上色应用(C++) 时间:2020-12-01 15:29:16 本实验主要介绍基于AI1型服务器的黑白图像上色项目,并部署在AI1型服务器上执行的方法。 实验目标与基本要求 本实验主要介绍基于AI1型弹性云服务器完成黑白图像上色应用开发,通过该实验了解将神经网络模型部署到昇腾310处理器运行的一般过程和方法。

    来自:百科

    查看更多 →

  • 昇腾AI软件栈逻辑架及功能介绍

    领域,提供不同的处理算法。应用使能层包含计算机视觉引擎、语言文字引擎以及通用业务执行引擎等,其中: 1、计算机视觉引擎面向计算机视觉领域提供一些视频或图像处理的算法封装,专门用来处理计算机视觉领域的算法和应用。 2、语言文字引擎面向语音及其他领域,提供一些语音、文本等数据的基础处

    来自:百科

    查看更多 →

  • 什么是ModelArts

    要关心底层的技术。同时,ModelArts支持TensorflowMXNet等主流开源的AI开发框架,也支持开发者使用自研的算法框架,匹配您的使用习惯。 ModelArts的理念就是让AI开发变得更简单、更方便。 面向不同经验的AI开发者,提供便捷易用的使用流程。例如,面向业务

    来自:百科

    查看更多 →

  • 什么是AI开发

    模型可以应用到新的数据中,得到预测、评价等结果。 业界主流的AI引擎TensorFlowSpark_MLlibMXNetCaffePyTorch、XGBoost-Sklearn等,大量的开发者基于主流AI引擎,开发并训练其业务所需的模型。 4.评估模型 训练得到模型之后

    来自:百科

    查看更多 →

共105条
看了本文的人还看了