检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
数据准备 数据准备 以下数据和表结构是根据场景进行模拟的数据,并非真实数据。 以下数据需要提前存导入到MySQL\Hive\Oracle等用户所属数据源中,TICS本身不会持有这些数据,这些数据会通过用户购买的计算节点进行加密计算,保障数据安全。 政府信息提供方的数据tax和su
准备数据 A方提供了待查询的用户ID数据,样例如下: blacklist_query.csv id 1914fd1aef9346e7a1b0a63c95aa918e 6b86b273ff34fce19d6b804eff5a3f57 66985617b4f74d14b4eceeaa25d61f5e
隐私求交黑名单共享场景 场景描述 准备数据 发布数据集 创建并运行隐私求交作业 查看求交结果 父主题: 使用场景
创建合约 数据拥有方公司A同意数据需求方公司B的数据使用申请后,可以由公司A创建合约,合约是需要双方同意的数据使用证明。 合约内容包括:合约名称、合约描述、数据信息、公司B的访问需求、访问限制和自定义限制。其中数据信息、公司B的访问需求来自于公司B的数据使用申请,合约名称、合约描
可信计算节点发生主备切换,原节点登录地址不可用,如何处理? 若可信节点因为节点故障等原因产生了主备切换的操作,会导致原先可信节点控制台登录地址改变。此时需重新登录TICS管理台,单击前往计算节点,登录最新的节点控制台。 图1 登录最新的节点控制台 原先的可信节点控制台登录后右上角会显示不互信。
创建可信联邦学习作业 联邦建模的过程由企业A来操作,在“作业管理 > 可信联邦学习”页面单击“创建”,填写作业名称并选择算法类型后单击确定即进入联邦建模作业界面。本文逻辑回归算法为例。 父主题: 使用TICS可信联邦学习进行联邦建模
阶段二:隐私规则防护 使用TICS的隐私规则防护能力确保数据安全。 前提条件 完成数据发布。 操作步骤 进入多方安全计算的作业执行界面,单击创建。 图1 创建作业 在作业界面中,按照1~4提供的案例和SQL语句进行作业测试。 图2 作业界面 假设有人输入以下代码试图直接查询敏感数据。
基本计算能力验证 验证TICS的基础计算能力,以计算各企业在2021年的价值评分,用于评估信贷能力,其中的公式仅为简单的参考计算式。 操作步骤 执行如下的sql作业。 select c.id as `企业id`, 0.5 * a.tax_bal + 0.8 * b.supp_bal
查看求交结果 隐私求交作业执行完成后,企业A可以通过单击“历史作业 > 查看结果”看到隐私求交作业的运行结果,包括交集的大小和交集文件的路径。 打开obs到指定目录下查看,可以看到有两个结果文件,其中一个是交集记录的序号alignedIds.csv,另一个是交集记录的id alignedOriginalIds
如何创建及查找sfs_turbo文件系统的ID? 新建SFS_Turbo 在服务控制台的左侧服务列表搜索SFS,找到弹性文件服务,单击打开SFS服务控制台。 图1 弹性文件服务 在SFS服务控制台,找到SFS_Turbo,单击立即创建,或者右上角的创建文件系统。 图2 创建文件系统
场景描述 现有企业A和企业B达成了一项数据共享合作协议,企业B允许企业A根据用户id查询企业B的数据,辅助企业A的实时分析业务。而企业A不想暴露给企业B自己查询的用户id,因为查询该用户的信息隐含着“该用户是企业A的客户”的信息,存在用户隐私泄露的风险。 企业A和企业B可以使用T
准备数据 企业A的实时业务不需要准备数据,在发起查询时通过参数传递需要查询的用户id。 表1 企业B用户画像数据 字段名称 字段类型 描述 id string hash过后的手机号字符串 f0-f4 float 用户数据画像特征 bigdata_all.csv id,f0,f1,f2
获取可信计算节点访问token 功能介绍 本接口用于获取访问token。 用户使用账号密码获取访问token,有效期一天。 账户密码错误超过五次,账户将被锁定1分钟。 调用方法 请参见如何调用API。 URI POST /v1/agent/user/token 请求参数 表1 请求Header参数
使用TICS可信联邦学习进行联邦建模 场景描述 准备数据 发布数据集 创建可信联邦学习作业 选择数据 样本对齐 筛选特征 模型训练 模型评估 父主题: 纵向联邦建模场景
执行实时隐匿查询作业 企业A在发起实时隐匿查询前需要先执行数据初始化。 待实时预测作业初始化完成后,企业A可以通过页面单击“执行”试用发起查询。 例如查询id为“19581e27de7ced00ff1ce50b2047e7a567c76b1cbaebabe5ef03f7c3017
评估型横向联邦作业流程 基于横向联邦作业的训练结果,可以进一步评估横向联邦模型,将训练好的模型用于预测。 选择对应训练型作业的“历史作业”按钮,获取最新作业的模型结果文件路径。 图1 查看模型结果文件的保存位置 前往工作节点上步骤1展示的路径,下载模型文件。由于Logistic
隐私规则防护 使用TICS的隐私规则防护能力确保数据安全。 前提条件 完成数据集发布。 操作步骤 进入多方安全计算的作业执行界面,单击创建。 图1 创建作业 在作业界面中,按照示例一和示例二提供的案例和SQL语句进行作业测试。 图2 作业界面 示例一: 假设有人输入以下代码试图直接查询敏感数据。
发布数据集 企业A和大数据厂商B分别将自己的csv数据文件上传到自己的计算节点上,通过“数据管理”模块创建各自的数据集。 企业A的数据集如下: 大数据厂商B的数据集如下: 创建数据集后单击“发布”按钮即可将数据的元数据信息发布到tics空间侧,供其他合作方参考。 父主题: 使用TICS可信联邦学习进行联邦建模
场景描述 某企业A在进行新客户营销时的成本过高,想要通过引入外部数据的方式提高营销的效果,降低营销成本。 因此企业A希望与某大数据厂商B展开一项合作,基于双方共有的数据进行联邦建模,使用训练出的联邦模型对新数据进行联邦预测,筛选出高价值的潜在客户,再针对这些客户进行定向营销,达成提高营销效果、降低营销成本的业务诉求。
准备数据 首先,企业A和大数据厂商B需要商议确定要提供的数据范围及对应的元数据信息,双方初始决定使用最近三个月的已有用户转化数据作为联邦训练的训练集和评估集,之后使用每周产生的新数据作为联邦预测的预测集。 表1 企业A的数据 字段名称 字段类型 描述 id string hash过后的手机号字符串