检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
计算节点API 获取用户token 可信计算节点管理 连接器管理 数据集注册管理 任务管理 通知管理 数据集管理 多方安全计算作业管理 可信联邦学习作业管理 联邦预测作业管理 作业实例管理 联邦学习作业管理
根据自己偏好的语言来获取不同语言的返回内容,zh-cn或者en_us Content-Type 是 String 发送的实体的MIME类型 响应参数 状态码: 200 表3 响应Body参数 参数 参数类型 描述 job_instance_status String 实例状态 请求示例
图2 pir或.PIR标识隐匿查询字段 单击编辑器右侧的“作业配置项”,进行作业配置。 重试:开关开启后,执行失败的作业会根据配置定时进行重试,仅对开启后的执行作业生效。开关关闭后,关闭前已触发重试的作业不受影响,仅对关闭后的执行作业生效。 执行参数:用于作业调优。当前可用执行参数介绍如下:
连接器管理 新建或更新连接器 获取连接器列表 测试连接器创建参数 删除连接器 父主题: 计算节点API
)打破数据孤岛,在数据隐私保护的前提下,实现行业内部、各行业间的多方数据联合分析和联邦计算。TICS基于安全多方计算MPC、区块链等技术,实现了数据在存储、流通、计算过程中端到端的安全和可审计,推动了跨行业的可信数据融合和协同。 使用TICS的用户角色 根据人员的职能进行划分,使用TICS的用户主要可以分为以下两类。
当您参考准备工作章节完成注册账号并实名认证、配置CCE服务、配置IEF服务、购买购买TICS服务、授权IAM用户使用TICS、准备数据、启用区块链审计服务(可选)等一系列操作后,可以根据自身的业务需求使用TICS提供的常用实践。 表1 常用最佳实践 实践 描述 基于TICS实现端到端的企业积分查询作业
准备工作 准备工作简介 注册账号并实名认证 配置CCE服务 配置IEF服务 TICS服务委托授权 购买TICS服务 授权IAM用户使用TICS 准备数据 启用区块链审计服务(可选) 参考:获取认证信息 配置IEF高可用节点 配置CCE集群子账号权限 购买Model Lite资源池
为什么空间详情中“作业执行统计”实例数与空间作业中实例数统计不一致? 空间作业中的实例数统计的是实例总个数,而空间详情中“作业执行统计”实例数统计全部实例的总执行次数,可能存在一个实例执行多轮的情况。所以两个实例数统计不一致也是很正常的。
String 空间server组件的ip,为server的snatip,设置代理节点的入方向安全组规则 nat_eip String 可信节点绑定的网关的ip,CCE部署时会返回该值 nat_eip_id String 可信节点绑定的网关的ip的Id,CCE部署时会返回该值 node_az
} else { fmt.Println(err) } } 更多编程语言的SDK代码示例,请参见API Explorer的代码示例页签,可生成自动对应的SDK代码示例。 状态码 状态码 描述 200 合作方信息统计 401 操作无权限 403 Forbidden
步骤1:准备工作 如果您是第一次使用TICS,请参考准备工作,完成注册账号并实名认证、配置CCE服务、购买TICS服务、授权IAM用户使用TICS、准备数据、启用区块链审计服务(可选)等一系列准备工作。 本入门示例,是为了演示TICS使用的全流程。组织方在组建空间时,需要至少添加1位合作方。 父主题:
} else { fmt.Println(err) } } 更多编程语言的SDK代码示例,请参见API Explorer的代码示例页签,可生成自动对应的SDK代码示例。 状态码 状态码 描述 200 获取空间详细信息 401 操作无权限 403 Forbidden
X-Language 是 String 根据自己偏好的语言来获取不同语言的返回内容,zh-cn或者en_us Content-Type 是 String 发送的实体的MIME类型 响应参数 状态码: 200 表3 响应Body参数 参数 参数类型 描述 ext String 参数等额外信息,最大长度32
注:以上操作为节点采用密钥登录,无密码的场景下 若所建节点采用密钥对登录的形式,可手动复制公钥文件id_rsa.pub到对端节点的指定用户的home路径下(root用户的路径为/root) 在对端节点下操作: 查看指定用户home目录下有无.ssh文件夹,没有的话创建一个,复制中的id_rsa
数据集管理 查询空间已注册数据集列表 父主题: 空间API
可信联邦学习作业是可信智能计算服务提供的在保障用户数据安全的前提下,利用多方数据实现的联合建模。 安全可信。 多种训练场景。 方便与已有服务对接。 使用场景 横向联邦机器学习 横向联邦机器学习,适用于参与者的数据特征重叠较多,而样本ID重叠较少的情况,联合多个参与者的具有相同特征的多行样本进行可信联邦学习,联合建模。
“链代码版本”须为“1.0”。 勾选需要背书的组织及Peer节点。 发起方按照链代码管理章节中“实例化链代码”部分的描述,完成实例化链代码操作。 注意事项: “初始化函数”参数值须为“init”。 “背书策略”勾选“任意组织背书” 完成上述步骤后用户可前往区块浏览器查看上链的初始化日志信息。 父主题:
支持控制流和数据流的分离,用户无需关心计算任务拆解和组合过程,采用有向无环图DAG实现多个参与方数据流的自动化编排和融合计算。 自主高效 数据使用全流程可视化展示,为数据参与方提供可感知、可监测的数据使用过程; 支持数据参与方、计算方的多种部署模式,包括云上(同Region、跨
接AOM。 计算节点为边缘节点部署时,需要手动在IEF平台对接AOM。 约束限制 对接AOM之后,相应的日志存储在AOM平台上,平台每月提供500M的免费空间,超出则计费。具体的计费规则参见计费概述。 计算节点为边缘节点部署时,仅支持1.20.0及以上版本对接AOM,低版本可参考空间升级将空间升级至最新版本。
纵向联邦建模场景 使用TICS多方安全计算进行联合样本分布统计 使用TICS可信联邦学习进行联邦建模 使用TICS联邦预测进行新数据离线预测 父主题: 使用场景