检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
到指定目录章节完成。训练脚本中会自动执行训练前的权重转换操作和数据处理操作。 步骤二 修改训练Yaml配置文件 权重文件支持以下组合方式,用户根据自己实际要求选择: 训练stage 不加载权重 增量训练:加载权重,不加载优化器(默认开启) 断点续训:加载权重+优化器 pt sft
换的过程。 如果用户进行自定义数据集预处理以及权重转换,可通过编辑 1_preprocess_data.sh 、2_convert_mg_hf.sh 中的具体python指令运行。本代码中有许多环境变量的设置,在下面的指导步骤中,会展开进行详细的解释。 如果用户希望自定义参数进行
动完成数据预处理和权重转换的过程。 如果用户进行自定义数据集预处理以及权重转换,可通过编辑 1_preprocess_data.sh 、2_convert_mg_hf.sh中的具体python指令,并在Notebook环境中运行执行。用户可通过Notebook中创建.ipynb文
动完成数据预处理和权重转换的过程。 如果用户进行自定义数据集预处理以及权重转换,可通过编辑 1_preprocess_data.sh 、2_convert_mg_hf.sh中的具体python指令,并在Notebook环境中运行执行。用户可通过Notebook中创建.ipynb文
换的过程。 如果用户进行自定义数据集预处理以及权重转换,可通过编辑 1_preprocess_data.sh 、2_convert_mg_hf.sh 中的具体python指令运行。本代码中有许多环境变量的设置,在下面的指导步骤中,会展开进行详细的解释。 如果用户希望自定义参数进行
重转换的过程。 若用户进行自定义数据集预处理以及权重转换,可通过编辑 1_preprocess_data.sh 、2_convert_mg_hf.sh 中的具体python指令运行。本代码中有许多环境变量的设置,在下面的指导步骤中,会展开进行详细的解释。 若用户希望自定义参数进行
准备权重 获取对应模型的权重文件,获取链接参考表1。 在创建OBS桶创建的桶下创建文件夹用以存放权重和词表文件,例如在桶standard-llama2-13b中创建文件夹llama2-13B-chat-hf。 参考文档利用OBS-Browser-Plus工具将步骤1下载的权重文件
准备数据 本教程使用到的训练数据集是Alpaca数据集。您也可以自行准备数据集。 数据集下载 本教程使用Alpaca数据集,数据集的介绍及下载链接如下。 Alpaca数据集是由OpenAI的text-davinci-003引擎生成的包含52k条指令和演示的数据集。这些指令数据可以用来
准备权重 获取对应模型的权重文件,获取链接参考表1。 在创建OBS桶创建的桶下创建文件夹用以存放权重和词表文件,例如在桶standard-llama2-13b中创建文件夹llama2-13B-chat-hf。 参考文档利用OBS-Browser-Plus工具将步骤1下载的权重文件
LLama-Factory ShareGPT 指令微调数据:ShareGPT 格式来源于通过记录 ChatGPT 与用户对话的数据集,主要用于对话系统的训练。它更侧重于多轮对话数据的收集和组织,模拟用户与 AI 之间的交互。数据集包含有以下字段: conversations:包含一系列对话对象,每个
LLama-Factory ShareGPT 指令微调数据:ShareGPT 格式来源于通过记录 ChatGPT 与用户对话的数据集,主要用于对话系统的训练。它更侧重于多轮对话数据的收集和组织,模拟用户与 AI 之间的交互。数据集包含有以下字段: conversations:包含一系列对话对象,每个
本教程使用到的训练数据集是Alpaca数据集。您也可以自行准备数据集。 Alpaca数据集 本教程使用Alpaca数据集,数据集的介绍及下载链接如下。 Alpaca数据集是由OpenAI的text-davinci-003引擎生成的包含52k条指令和演示的数据集。这些指令数据可以用来
准备数据 本教程使用到的训练数据集是Alpaca数据集。您也可以自行准备数据集。 数据集下载 本教程使用Alpaca数据集,数据集的介绍及下载链接如下。 Alpaca数据集是由OpenAI的text-davinci-003引擎生成的包含52k条指令和演示的数据集。这些指令数据可以用来
本教程使用到的训练数据集是Alpaca数据集。您也可以自行准备数据集。 Alpaca数据集 本教程使用Alpaca数据集,数据集的介绍及下载链接如下。 Alpaca数据集是由OpenAI的text-davinci-003引擎生成的包含52k条指令和演示的数据集。这些指令数据可以用来
使用ma-user用户执行如下命令运行训练脚本。 sh run_lora.sh 所有数据保存在auto_log/avg_step_time.txt文本中 auto_log/log/目录下存放各个shapes的数据。 启动SDXL LoRA训练服务 使用ma-user用户执行如下命令运行训练脚本。
project_id 是 String 用户项目ID。获取方法请参见获取项目ID和名称。 请求参数 表2 请求Header参数 参数 是否必选 参数类型 描述 X-Auth-Token 是 String 用户Token。通过调用IAM服务获取用户Token接口获取(响应消息头中X-Subject-Token的值)。
0:打标者 1:审核者 2:团队管理者 3:数据集拥有者 status Integer 标注成员的当前登录状态。可选值如下: 0:未发送邀请邮件 1:已发送邀请邮件但未登录 2:已登录 3:标注成员已删除 update_time Long 更新时间。 worker_id String
、监控、持续运行等功能 针对工作流开发,Workflow提供流水线需要覆盖的功能以及功能需要的参数描述,供用户使用SDK对步骤以及步骤之间的关系进行定义 针对工作流复用,用户可以在开发完成后将流水线固化下来,提供下次或其他人员使用,同时无需关注流水线中包含什么算法或如何实现 图1
该字段内容填为“application/json;charset=utf8。 X-Auth-Token 是 String 用户Token。通过调用IAM服务获取用户Token接口获取(响应消息头中X-Subject-Token的值)。 表3 请求Body参数 参数 是否必选 参数类型
请求参数 表3 请求Header参数 参数 是否必选 参数类型 描述 X-Auth-Token 是 String 用户Token。通过调用IAM服务获取用户Token接口获取(响应消息头中X-Subject-Token的值)。 响应参数 状态码:200 表4 响应Body参数