检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
行条化策略(属性匹配召回作业、物品协同过滤召回作业、用户协同过滤召回作业需要提供此参数)。 match_type String 匹配类型(属性匹配召回作业需提供此参数): UI,基于用户推荐物品 UU,基于用户推荐用户 II,基于物品推荐物品 IU,基于物品推荐用户 matrix_factorization
行条化策略(属性匹配召回作业、物品协同过滤召回作业、用户协同过滤召回作业需要提供此参数)。 match_type 否 String 匹配类型(属性匹配召回作业需提供此参数): UI,基于用户推荐物品 UU,基于用户推荐用户 II,基于物品推荐物品 IU,基于物品推荐用户 matrix_factorization
行条化策略(属性匹配召回作业、物品协同过滤召回作业、用户协同过滤召回作业需要提供此参数)。 match_type 否 String 匹配类型(属性匹配召回作业需提供此参数): UI,基于用户推荐物品 UU,基于用户推荐用户 II,基于物品推荐物品 IU,基于物品推荐用户 matrix_factorization
行条化策略(属性匹配召回作业、物品协同过滤召回作业、用户协同过滤召回作业需要提供此参数)。 match_type 否 String 匹配类型(属性匹配召回作业需提供此参数): UI,基于用户推荐物品 UU,基于用户推荐用户 II,基于物品推荐物品 IU,基于物品推荐用户 matrix_factorization
属性值过滤 指定定制化用户属性以及物品属性过滤规则,属性过滤规则用于过滤最终用户的推荐结果。例如,对于一线城市的用户过滤敏感信息物品,使之不进入候选集。单击增加属性过滤规则。 “用户属性”:指定在用户属性中需要过滤的字段,包含属性名和属性值。如过滤籍贯是广东且性别为男性的用户。 “物品属性
最大次数:某用户对某物品产生某行为的最大次数。 系统默认行为类型包括: view:物品曝光 click:用户点击物品 collect:用户收藏了某个物品 uncollect:用户取消收藏某个物品 search_click:用户点击搜索结果中的物品 comment:用户对物品的评论
参数设置 参数别名:用户指定参数别名应用于指标公式。 行为类型:选择需要进行评估的行为类型,如物品曝光。 阈值:阈值是用来衡量用户行为有效性的标准, 当数据源的actionMeasure的值大于阈值时, 当前用户行为有效。 去重:您可以单击勾选,根据用户对行为记录去重。 指标设置
行条化策略(属性匹配召回作业、物品协同过滤召回作业、用户协同过滤召回作业需要提供此参数)。 match_type 否 String 匹配类型(属性匹配召回作业需提供此参数): UI,基于用户推荐物品 UU,基于用户推荐用户 II,基于物品推荐物品 IU,基于物品推荐用户 matrix_factorization
行条化策略(属性匹配召回作业、物品协同过滤召回作业、用户协同过滤召回作业需要提供此参数)。 match_type 否 String 匹配类型(属性匹配召回作业需提供此参数): UI,基于用户推荐物品 UU,基于用户推荐用户 II,基于物品推荐物品 IU,基于物品推荐用户 matrix_factorization
行条化策略(属性匹配召回作业、物品协同过滤召回作业、用户协同过滤召回作业需要提供此参数)。 match_type String 匹配类型(属性匹配召回作业需提供此参数): UI,基于用户推荐物品 UU,基于用户推荐用户 II,基于物品推荐物品 IU,基于物品推荐用户 matrix_factorization
行条化策略(属性匹配召回作业、物品协同过滤召回作业、用户协同过滤召回作业需要提供此参数)。 match_type String 匹配类型(属性匹配召回作业需提供此参数): UI,基于用户推荐物品 UU,基于用户推荐用户 II,基于物品推荐物品 IU,基于物品推荐用户 matrix_factorization
排序策略-离线排序模型 排序策略简介 排序策略用于训练排序模型,该模型将被用于对召回策略召回的候选集进行排序,以将推荐物品顺序调整到最优。 Logistic Regression (LR) LR算法是一种广义的线性回归分析模型,常用于数据挖掘、疾病自动诊断、经济预测等领域。LR算
对于特征工程的描述信息。 待提取用户特征 排序模型需要经特征工程处理后的数据, 选择排序模型需要的用户特征, 未选择的用户特征将不会被处理,即排序模块将忽略这些特征。 说明: 离散的区间个数不能超过100个,请您根据业务需求合理分配参数值。 单击,增加用户特征。在下拉选项中勾选特征参
在线服务获得推荐的调用次数如何计算? RES从全局角度计算在线服务获得推荐的调用次数,不区分每次调用的用户。例如A用户调用请求推荐接口是每秒5次,B用户调用请求推荐接口每秒5次,当A用户和B用户同时调用此接口时,总的获得推荐的调用请求为A用户和B用户之和,即5+5=10。 父主题: 自定义场景
使用限制 在使用RES时,需注意以下使用限制。 建议使用支持的浏览器登录RES服务。 Google Chrome : 43.0及更高版本。 Mozilla FireFox : 38.0及更高版本。 Internet Explorer : 9.0及更高版本。 推荐系统属于高并发低时延场景,建议使用私有网络获取推荐结果。
的召回候选集来自于离线计算基于物品的协同过滤生成的候选集,而为了尽可能保证推荐的匹配度,要求推荐出来的物品尽可能的与用户性别、体质和年龄等属性吻合,所以考虑基于用户性别、体质和年龄等属性用标签索引得到的满足条件物品列表item1, 对离线生成的items2进行如下处理:先从ite
RES的离线数据源包括什么? 离线数据包括如下几张表: 用户属性表 物品属性表 用户操作行为表 每张表的字段描述和规范详情请参见《推荐系统用户指南》中准备离线数据源章节。 父主题: 数据源
附录 错误码 状态码 获取项目ID 获取账号ID
作业相关API 提交组合作业 提交召回作业 提交过滤作业 提交特征工程作业 提交排序作业 提交实时流近线作业 提交流式训练作业 提交数据质量作业 策略参数说明 停止算子作业 查询作业列表 查询作业详情 重新执行作业 删除作业 提交效果评估任务 查询效果指标 编辑修改作业 更新索引结构
提交排序作业 提交排序任务API 查询ModelArts服务AK/SK 关联AK/SK到ModelArts服务 查询ModelArts计算节点规格 父主题: 作业相关API