检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
上线加工后的视频类数据集 加工后的视频类数据集需要执行上线操作,用于后续的数据标注、评估、发布任务,具体步骤如下: 登录ModelArts Studio大模型开发平台,进入所需操作空间。 图1 进入操作空间 在左侧导航栏中选择“数据工程 > 数据加工”,在数据集操作列单击“上线”,执行上线操作。
上线加工后的图片类数据集 加工后的图片类数据集需要执行上线操作,用于后续的数据标注、评估、发布任务,具体步骤如下: 登录ModelArts Studio大模型开发平台,进入所需操作空间。 图1 进入操作空间 在左侧导航栏中选择“数据工程 > 数据加工”,在数据集操作列单击“上线”,执行上线操作。
Studio大模型开发平台提供多种高效灵活的数据接入方式,支持本地上传、通过OBS服务将数据导入平台。平台支持的多种数据类型包括文本、图片、视频等,能够满足不同行业和业务需求的多样化数据接入方式。用户还可以根据业务需求上传自定义格式的数据,极大地提升了数据获取的灵活性和可扩展性。通过这一功能,用户能够方便快捷地将
大模型,请参考《用户指南》“开发盘古NLP大模型 > 训练NLP大模型 > NLP大模型训练流程与选择建议”。 关于平台接入的数据格式要求,请参考《用户指南》“使用数据工程准备与处理数据集 > 数据集格式要求”。 平台上单个用户最多可创建和管理2000个模型实例。
化对话问答功能。 准备工作 请确保您有预置的NLP大模型,并已完成模型的部署操作,详见《用户指南》“开发盘古NLP大模型 > 部署NLP大模型 > 创建NLP大模型部署任务”。 操作流程 登录ModelArts Studio大模型开发平台,进入所需空间。 单击左侧“能力调测”,进
其他类数据集格式要求 除文本、图片、视频、气象、预测类数据集外,用户训练模型时如果使用较特殊的数据集,ModelArts Studio大模型开发平台支持导入用户自定义的数据集。 例如,在训练CV类算法(如图片分类、图片分割、图片检测等任务)时,用户需使用“其他”类型的数据集。 其他类数据集可直接
开发盘古NLP大模型 使用数据工程构建NLP大模型数据集 训练NLP大模型 压缩NLP大模型 部署NLP大模型 调用NLP大模型
开发盘古科学计算大模型 使用数据工程构建科学计算大模型数据集 训练科学计算大模型 部署科学计算大模型 调用科学计算大模型
管理盘古大模型空间资产 盘古大模型空间资产介绍 管理盘古数据资产 管理盘古模型资产
开发盘古大模型Agent应用 Agent开发平台概述 手工编排Agent应用 创建与管理工作流
开发盘古大模型提示词工程 什么是提示词工程 获取提示词模板 撰写提示词 横向比较提示词效果 批量评估提示词效果 发布提示词
使用数据工程准备与处理数据集 数据工程介绍 数据工程使用流程 数据集格式要求 导入数据至盘古平台 加工数据集 标注数据集 评估数据集 发布数据集 数据工程常见报错与解决方案
训练NLP大模型 NLP大模型训练流程与选择建议 创建NLP大模型训练任务 查看NLP大模型训练状态与指标 发布训练后的NLP大模型 管理NLP大模型训练任务 NLP大模型训练常见报错与解决方案 父主题: 开发盘古NLP大模型
节,帮助用户高效构建高质量的训练数据集,推动AI应用的成功落地。具体功能如下: 数据获取:用户可以轻松将多种类型的数据导入ModelArts Studio大模型开发平台,支持的数据类型包括文本、图片、视频、气象、预测数据以及用户自定义的其他类型数据。平台提供灵活的数据接入方式,确
调用NLP大模型 使用“能力调测”调用NLP大模型 使用API调用NLP大模型 统计模型调用信息 父主题: 开发盘古NLP大模型
部署NLP大模型 创建NLP大模型部署任务 查看NLP大模型部署任务详情 管理NLP大模型部署任务 父主题: 开发盘古NLP大模型
创建并管理盘古工作空间 盘古工作空间介绍 创建并管理盘古工作空间 管理盘古工作空间成员 父主题: 准备工作
知识型Agent:以大模型为任务执行核心,用户通过配置Prompt、知识库、工具、规划模式等信息,实现工具自主规划与调用,优点是可零码开发,对话过程更为智能,缺点是当大模型受到输入限制,难以执行链路较长且复杂的流程。 流程型Agent:以工作流为任务执行核心,用户通过在画布上对组件进行“拖拉拽
撰写提示词 创建提示词工程 撰写所需提示词 预览提示词效果 父主题: 开发盘古大模型提示词工程
督信号直接从数据本身派生。 有监督学习 有监督学习是机器学习任务的一种。它从有标记的训练数据中推导出预测函数。有标记的训练数据是指每个训练实例都包括输入和期望的输出。 LoRA 局部微调(LoRA)是一种优化技术,用于在深度学习模型的微调过程中,只对模型的一部分参数进行更新,而不